Skip to main content
Article

Self-Reported Emotion Regulation Is Associated With Response to Test of Cardiac Vagal Function

Published Online:https://doi.org/10.1027/0269-8803/a000283

Abstract. Parasympathetic function and emotional self-regulation (ESR) share neuroanatomic structures. Based on Porges’ Polyvagal Theory and the Neurovisceral Integration Model (NIM), we compared vagally mediated heart-rate variability (vmHRV) with psychometrically assessed ESR. We hypothesized that vmHRV and ESR would be associated during rest, a vagal function test, and recovery from that test. A significant association would justify the psychometric measuring of parasympathetic health, which is less burdensome than its psychophysiological assessment. Two hundred thirteen healthy males (aged: 18–26 years, M = 20.29 years) took part in the present study. They completed the Emotion Regulation Questionnaire (ERQ) and underwent the Cold Face Test (CFT) for 4 min wearing ambulatory electrocardiograms. A High frequency (HF) band was used as a measure of vmHRV before, during, and after the CFT. Associations between the HF band and ESR were analyzed with partial rank correlations. There was no significant association between ERQ scores and the response to the CFT itself. But there was an almost significant association between the ERQ scale Cognitive Appraisal and baseline vmHRV, and a significant association between Cognitive Appraisal and cardiac recovery from the CFT, that is, participants with higher scores on that ESR scale revealed a tendency to exhibit greater vmHRV during baseline and they exhibited greater vagal withdrawal during recovery from the CFT. Cognitive appraisal as a psychometrically assessed emotion regulatory process was reflected in a more flexible parasympathetic activity (i.e., better cardiac vagal health) during recovery from an exclusively physiological stressor. This lends convergent validity to self-reported emotion regulation, and justification for its use as a measure of ESR as a trait, offering further support for the Polyvagal Theory and NIM.

References

  • Abravanel, B. T., & Sinha, R. (2015). Emotion dysregulation mediates the relationship between lifetime cumulative adversity and depressive symptomatology. Journal of Psychiatric Research, 61, 89–96. https://doi.org/10.1016/j.jpsychires.2014.11.012 First citation in articleCrossrefGoogle Scholar

  • Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229–240. https://doi.org/10.1037/1089-2680.10.3.229 First citation in articleCrossrefGoogle Scholar

  • Baumeister, R. F.Vohs, K. D. (Eds.). (2004). Handbook of self-regulation: Research, theory, and applications. Guilford Press. First citation in articleGoogle Scholar

  • Beath, A. P., Jones, M. P., & Fitness, J. (2015). Predicting distress via emotion regulation and coping: Measurement variance in trait EI scales. Personality and Individual Differences, 84, 45–51. https://doi.org/10.1016/j.paid.2014.12.015 First citation in articleCrossrefGoogle Scholar

  • Beauchaine, T. P. (2012). Physiological markers of emotion and behavior dysregulation in externalizing psychopathology. Monographs of the Society for Research in Child Development, 77(2), 79–86. https://doi.org/10.1111/j.1540-5834.2011.00665.x First citation in articleCrossrefGoogle Scholar

  • Beauchaine, T. P., Gatzke-Kopp, L., Neuhaus, E., Chipman, J., Reid, M. J., & Webster-Stratton, C. (2013). Sympathetic- and parasympathetic-linked cardiac function and prediction of externalizing behavior, emotion regulation, and prosocial behavior among preschoolers treated for ADHD. Journal of Consulting and Clinical Psychology, 81(3), 481–493. https://doi.org/10.1037/a0032302 First citation in articleCrossrefGoogle Scholar

  • Bernardi, L., Porta, C., Gabutti, A., Spicuzza, L., & Sleight, P. (2001). Modulatory effects of respiration. Autonomic Neuroscience, 90(1–2), 47–56. https://doi.org/10.1016/S1566-0702(01)00267-3 First citation in articleCrossrefGoogle Scholar

  • Berntson, G. G., Thomas Bigger, J., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & Van Der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x First citation in articleCrossrefGoogle Scholar

  • Brooker, R. J., & Buss, K. A. (2010). Dynamic measures of RSA predict distress and regulation in toddlers. Developmental Psychobiology, 52(4), 372–382. https://doi.org/10.1002/dev.20432 First citation in articleCrossrefGoogle Scholar

  • Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981–2990. https://doi.org/10.1093/cercor/bht154 First citation in articleCrossrefGoogle Scholar

  • Burt, K. B., & Obradović, J. (2013). The construct of psychophysiological reactivity: Statistical and psychometric issues. Developmental Review, 33(1), 29–57. https://doi.org/10.1016/j.dr.2012.10.002 First citation in articleCrossrefGoogle Scholar

  • Cacioppo, J. T.Tassinary, L. G. (Eds.). (1990). Principles of psychophysiology: Physical, social, and inferential elements. Cambridge University Press. First citation in articleGoogle Scholar

  • Campos, M., Iraurgui, J., Páez, D., & Velasco, C. (2004). Afrontamiento y regulación emocional de hechos estresantes. Un meta-análisis de 13 estudios [Coping and emotional regulation of stress events. A meta-analysis of 13 studies]. Boletín de Psicología (Spain), 82, 25–44. First citation in articleGoogle Scholar

  • Chahar Mahali, S., Beshai, S., Feeney, J. R., & Mishra, S. (2020). Associations of negative cognitions, emotional regulation, and depression symptoms across four continents: International support for the cognitive model of depression. BMC Psychiatry, 20(1), Article 18. https://doi.org/10.1186/s12888-019-2423-x First citation in articleCrossrefGoogle Scholar

  • Chang, C.-C., Tzeng, N.-S., Yeh, C.-B., Kuo, T. B. J., Huang, S.-Y., & Chang, H.-A. (2018). Effects of depression and melatonergic antidepressant treatment alone and in combination with sedative–hypnotics on heart rate variability: Implications for cardiovascular risk. The World Journal of Biological Psychiatry, 19(5), 368–378. https://doi.org/10.1080/15622975.2017.1294765 First citation in articleCrossrefGoogle Scholar

  • Chang, H.-A., Fang, W.-H., Wan, F.-J., Tzeng, N.-S., Liu, Y.-P., Shyu, J.-F., Chang, T.-C., Huang, S.-Y., & Chang, C.-C. (2020). Attenuated vagally-mediated heart rate variability at rest and in response to postural maneuvers in patients with generalized anxiety disorder. Psychological Medicine, 50(9), 1433–1441. https://doi.org/10.1017/S0033291719001302 First citation in articleCrossrefGoogle Scholar

  • Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143–152. https://doi.org/10.1038/nrn3403 First citation in articleCrossrefGoogle Scholar

  • Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126(6), 890–909. https://doi.org/10.1037/0033-2909.126.6.890 First citation in articleCrossrefGoogle Scholar

  • de Geus, E., & Neumann, D. (2008). Psychophysiological measurement of personality. In G. BoyleG. MatthewsD. SaklofskeEds., The SAGE handbook of personality theory and assessment: Volume 2 – Personality measurement and testing (pp. 313–333). SAGE Publications. https://doi.org/10.4135/9781849200479.n15 First citation in articleCrossrefGoogle Scholar

  • Eftekhari, A., Zoellner, L. A., & Vigil, S. A. (2009). Patterns of emotion regulation and psychopathology. Anxiety, Stress & Coping, 22(5), 571–586. https://doi.org/10.1080/10615800802179860 First citation in articleCrossrefGoogle Scholar

  • Egizio, V. B., Eddy, M., Robinson, M., & Jennings, J. R. (2011). Efficient and cost-effective estimation of the influence of respiratory variables on respiratory sinus arrhythmia: Respiratory variables and RSA. Psychophysiology, 48(4), 488–494. https://doi.org/10.1111/j.1469-8986.2010.01086.x First citation in articleCrossrefGoogle Scholar

  • Egizio, V. B., Jennings, J. R., Christie, I. C., Sheu, L. K., Matthews, K. A., & Gianaros, P. J. (2008). Cardiac vagal activity during psychological stress varies with social functioning in older women. Psychophysiology, 45(6), 1046–1054. https://doi.org/10.1111/j.1469-8986.2008.00698.x First citation in articleCrossrefGoogle Scholar

  • El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interparental conflict and children’s adjustment and physical health: The moderating role of vagal tone. Child Development, 72(6), 1617–1636. https://doi.org/10.1111/1467-8624.00369 First citation in articleCrossrefGoogle Scholar

  • Extremera, N., & Rey, L. (2015). The moderator role of emotion regulation ability in the link between stress and well-being. Frontiers in Psychology, 6, Article 1632. https://doi.org/10.3389/fpsyg.2015.01632 First citation in articleCrossrefGoogle Scholar

  • Fanti, K. A., Eisenbarth, H., Goble, P., Demetriou, C., Kyranides, M. N., Goodwin, D., Zhang, J., Bobak, B., & Cortese, S. (2019). Psychophysiological activity and reactivity in children and adolescents with conduct problems: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 100, 98–107. https://doi.org/10.1016/j.neubiorev.2019.02.016 First citation in articleCrossrefGoogle Scholar

  • Gaebler, M., Daniels, J. K., Lamke, J.-P., Fydrich, T., & Walter, H. (2013). Heart rate variability and its neural correlates during emotional face processing in social anxiety disorder. Biological Psychology, 94(2), 319–330. https://doi.org/10.1016/j.biopsycho.2013.06.009 First citation in articleCrossrefGoogle Scholar

  • Gentzler, A. L., Santucci, A. K., Kovacs, M., & Fox, N. A. (2009). Respiratory sinus arrhythmia reactivity predicts emotion regulation and depressive symptoms in at-risk and control children. Biological Psychology, 82(2), 156–163. https://doi.org/10.1016/j.biopsycho.2009.07.002 First citation in articleCrossrefGoogle Scholar

  • Graziano, P., & Derefinko, K. (2013). Cardiac vagal control and children’s adaptive functioning: A meta-analysis. Biological Psychology, 94(1), 22–37. https://doi.org/10.1016/j.biopsycho.2013.04.011 First citation in articleCrossrefGoogle Scholar

  • Gross, J. J. (2008). Emotion regulation. In M. LewisJ. M. Haviland-JonesL. F. BarrettEds., Handbook of emotions (pp. 497–512). Guilford Press. First citation in articleGoogle Scholar

  • Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348–362. https://doi.org/10.1037/0022-3514.85.2.348 First citation in articleCrossrefGoogle Scholar

  • Gross, J. J., & Muñoz, R. F. (1995). Emotion regulation and mental health. Clinical Psychology: Science and Practice, 2(2), 151–164. https://doi.org/10.1111/j.1468-2850.1995.tb00036.x First citation in articleCrossrefGoogle Scholar

  • Haghighi, M., Ludyga, S., Rahimi, B., Jahangard, L., Ahmadpanah, M., Torabian, S., Esnaashari, F., Nazaribadie, M., Bajoghli, H., Sadeghi Bahmani, D., Holsboer-Trachsler, E., & Brand, S. (2017). In patients suffering from major depressive disorders, quantitative EEG showed favorable changes in left and right prefrontal cortex. Psychiatry Research, 251, 137–141. https://doi.org/10.1016/j.psychres.2017.02.012 First citation in articleCrossrefGoogle Scholar

  • Hallam, G. P., Webb, T. L., Sheeran, P., Miles, E., Wilkinson, I. D., Hunter, M. D., Barker, A. T., Woodruff, P. W. R., Totterdell, P., Lindquist, K. A., & Farrow, T. F. D. (2015). The neural correlates of emotion regulation by implementation intentions. PLoS One, 10(3), Article e0119500. https://doi.org/10.1371/journal.pone.0119500 First citation in articleCrossrefGoogle Scholar

  • Hänsel, A., & von Känel, R. (2008). The ventro-medial prefrontal cortex: A major link between the autonomic nervous system, regulation of emotion, and stress reactivity? BioPsychoSocial Medicine, 2(1), Article 21. https://doi.org/10.1186/1751-0759-2-21 First citation in articleCrossrefGoogle Scholar

  • Hartmann, R., Schmidt, F. M., Sander, C., & Hegerl, U. (2019). Heart rate variability as indicator of clinical state in depression. Frontiers in Psychiatry, 9, Article 735. https://doi.org/10.3389/fpsyt.2018.00735 First citation in articleCrossrefGoogle Scholar

  • Heath, M., & Downey, J. (1990). The cold face test (diving reflex) in clinical autonomic assessment: Methodological considerations and repeatability of responses. Clinical Science, 78(2), 139–147. https://doi.org/10.1042/cs0780139 First citation in articleCrossrefGoogle Scholar

  • Iorfino, F., Alvares, G. A., Guastella, A. J., & Quintana, D. S. (2016). Cold Face Test-induced increases in heart rate variability are abolished by engagement in a social cognition task. Journal of Psychophysiology, 30(1), 38–46. https://doi.org/10.1027/0269-8803/a000152 First citation in articleLinkGoogle Scholar

  • Jahangard, L., Tayebi, M., Haghighi, M., Ahmadpanah, M., Holsboer-Trachsler, E., Sadeghi Bahmani, D., & Brand, S. (2019). Does rTMS on brain areas of mirror neurons lead to higher improvements on symptom severity and empathy compared to the rTMS standard procedure? Results from a double-blind interventional study in individuals with major depressive disorders. Journal of Affective Disorders, 257, 527–535. https://doi.org/10.1016/j.jad.2019.07.019 First citation in articleCrossrefGoogle Scholar

  • Kadzikowska-Wrzosek, R. (2012). Perceived stress, emotional ill-being and psychosomatic symptoms in high school students: The moderating effect of self-regulation competences. Archives of Psychiatry and Psychotherapy, 14(3), 25–33. First citation in articleGoogle Scholar

  • Katz, L. F., & Rigterink, T. (2012). Domestic violence and emotion socialization. Monographs of the Society for Research in Child Development, 77(2), 52–60. https://doi.org/10.1111/j.1540-5834.2011.00661.x First citation in articleCrossrefGoogle Scholar

  • Khurana, R. K., & Wu, R. (2006). The Cold Face Test: A non-baroreflex mediated test of cardiac vagal function. Clinical Autonomic Research, 16(3), 202–207. https://doi.org/10.1007/s10286-006-0332-9 First citation in articleCrossrefGoogle Scholar

  • Koch, C., Wilhelm, M., Salzmann, S., Rief, W., & Euteneuer, F. (2019). A meta-analysis of heart rate variability in major depression. Psychological Medicine, 49(12), 1948–1957. https://doi.org/10.1017/S0033291719001351 First citation in articleCrossrefGoogle Scholar

  • Kok, B. E., & Fredrickson, B. L. (2010). Upward spirals of the heart: Autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85(3), 432–436. https://doi.org/10.1016/j.biopsycho.2010.09.005 First citation in articleCrossrefGoogle Scholar

  • La Marca, R., Waldvogel, P., Thörn, H., Tripod, M., Wirtz, P. H., Pruessner, J. C., & Ehlert, U. (2011). Association between Cold Face Test-induced vagal inhibition and cortisol response to acute stress: Vagal function and cortisol stress response. Psychophysiology, 48(3), 420–429. https://doi.org/10.1111/j.1469-8986.2010.01078.x First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research: Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, Article 213. https://doi.org/10.3389/fpsyg.2017.00213 First citation in articleCrossrefGoogle Scholar

  • Lacey, J. I., & Lacey, B. C. (1962). The law of initial value in the longitudinal study of autonomic constitution: Reproducibility of autonomic responses and response patterns over a four-year interval. Annals of the New York Academy of Sciences, 98(4), 1257–1290. https://doi.org/10.1111/j.1749-6632.1962.tb30633.x First citation in articleCrossrefGoogle Scholar

  • Lazarus, R. S., & Folkman, S. (1999). Stress, appraisal, and coping. Springer. http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780826141927 First citation in articleGoogle Scholar

  • Levenson, R. W. (2006). Blood, sweat, and fears: The autonomic architecture of emotion. Annals of the New York Academy of Sciences, 1000(1), 348–366. https://doi.org/10.1196/annals.1280.016 First citation in articleCrossrefGoogle Scholar

  • Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868 First citation in articleCrossrefGoogle Scholar

  • Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition & Emotion, 23(2), 209–237. https://doi.org/10.1080/02699930802204677 First citation in articleCrossrefGoogle Scholar

  • McNames, J., & Aboy, M. (2006). Reliability and accuracy of heart rate variability metrics versus ECG segment duration. Med Bio Eng Comput, 44(9), 747–756. https://doi.org/10.1007/s11517-006-0097-2 First citation in articleCrossrefGoogle Scholar

  • Mulki, J. P., Jaramillo, F., Goad, E. A., & Pesquera, M. R. (2015). Regulation of emotions, interpersonal conflict, and job performance for salespeople. Journal of Business Research, 68(3), 623–630. https://doi.org/10.1016/j.jbusres.2014.08.009 First citation in articleCrossrefGoogle Scholar

  • Oveis, C., Cohen, A. B., Gruber, J., Shiota, M. N., Haidt, J., & Keltner, D. (2009). Resting respiratory sinus arrhythmia is associated with tonic positive emotionality. Emotion, 9(2), 265–270. https://doi.org/10.1037/a0015383 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301–318. https://doi.org/10.1111/j.1469-8986.1995.tb01213.x First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2003). Social engagement and attachment. Annals of the New York Academy of Sciences, 1008(1), 31–47. https://doi.org/10.1196/annals.1301.004 First citation in articleCrossrefGoogle Scholar

  • Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916–931. https://doi.org/10.1016/S0306-4530(02)00108-7 First citation in articleCrossrefGoogle Scholar

  • Pyetan, E., & Akselrod, S. (2003). Do the high-frequency indexes of HRV provide a faithful assessment of cardiac vagal tone? A critical theoretical evaluation. IEEE Transactions on Biomedical Engineering, 50(6), 777–783. https://doi.org/10.1109/TBME.2003.812158 First citation in articleCrossrefGoogle Scholar

  • Quintana, D. S., Alvares, G. A., & Heathers, J. A. J. (2016). Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): Recommendations to advance research communication. Translational Psychiatry, 6(5), e803. https://doi.org/10.1038/tp.2016.73 First citation in articleCrossrefGoogle Scholar

  • Ragen, B. J., Roach, A. E., & Chollak, C. L. (2016). Chronic stress, regulation of emotion, and functional activity of the brain. In B. J. RagenEd., Stress: Concepts, cognition, emotion, and behavior (pp. 241–249). Elsevier. https://doi.org/10.1016/B978-0-12-800951-2.00029-7 First citation in articleCrossrefGoogle Scholar

  • Ray, R. D., & Zald, D. H. (2012). Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience & Biobehavioral Reviews, 36(1), 479–501. https://doi.org/10.1016/j.neubiorev.2011.08.005 First citation in articleCrossrefGoogle Scholar

  • Scrimin, S., Patron, E., Lanfranchi, S., Moscardino, U., Palomba, D., & Mason, L. (2019). Profiles of vagal withdrawal to challenging interactions: Links with preschoolers’ conceptual shifting ability. Developmental Psychobiology, 61(1), 116–124. https://doi.org/10.1002/dev.21787 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, Article 258. https://doi.org/10.3389/fpubh.2017.00258 First citation in articleCrossrefGoogle Scholar

  • Souza, G. G. L., Mendonça-de-Souza, A. C. F., Barros, E. M., Coutinho, E. F. S., Oliveira, L., Mendlowicz, M. V., Figueira, I., & Volchan, E. (2007). Resilience and vagal tone predict cardiac recovery from acute social stress. Stress, 10(4), 368–374. https://doi.org/10.1080/10253890701419886 First citation in articleCrossrefGoogle Scholar

  • Souza, G. G. L., Magalhães, L. N., Da Cruz, T. A. R., Mendonça-De-Souza, A. C. F., Duarte, A. F. A., Fischer, N. L., Souza, W. F., Coutinho, E. D. S. F., Vila, J., Gleiser, S., Figueira, I., & Volchan, E. (2013). Resting vagal control and resilience as predictors of cardiovascular allostasis in peacekeepers. Stress, 16(4), 377–383. https://doi.org/10.3109/10253890.2013.767326 First citation in articleCrossrefGoogle Scholar

  • Stanton, A. L. (2010). Regulating emotions during stressful experiences: The adaptive utility of coping through emotional approach. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195375343.013.0018 First citation in articleGoogle Scholar

  • Sutton, S. K., & Davidson, R. J. (2000). Prefrontal brain electrical asymmetry predicts the evaluation of affective stimuli. Neuropsychologia, 38(13), 1723–1733. https://doi.org/10.1016/S0028-3932(00)00076-2 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Tugade, M. M., & Fredrickson, B. L. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. Journal of Personality and Social Psychology, 86(2), 320–333. https://doi.org/10.1037/0022-3514.86.2.320 First citation in articleCrossrefGoogle Scholar

  • Weber, C. S., Thayer, J. F., Rudat, M., Wirtz, P. H., Zimmermann-Viehoff, F., Thomas, A., Perschel, F. H., Arck, P. C., & Deter, H. C. (2010). Low vagal tone is associated with impaired post stress recovery of cardiovascular, endocrine, and immune markers. European Journal of Applied Physiology, 109(2), 201–211. https://doi.org/10.1007/s00421-009-1341-x First citation in articleCrossrefGoogle Scholar

  • Westphal, M., & Bonanno, G. A. (2004). Emotion self-regulation. In M. BeauregardEd., Advances in consciousness research (Vol. 54, pp. 1). John Benjamins Publishing. https://doi.org/10.1075/aicr.54.03wes First citation in articleCrossrefGoogle Scholar

  • Williams, D. P., Cash, C., Rankin, C., Bernardi, A., Koenig, J., & Thayer, J. F. (2015). Resting heart rate variability predicts self-reported difficulties in emotion regulation: A focus on different facets of emotion regulation. Frontiers in Psychology, 6, Article 261. https://doi.org/10.3389/fpsyg.2015.00261 First citation in articleCrossrefGoogle Scholar