Skip to main content
Article

Higher Resting Cardiovagal Activity Predicts Larger Decrease of Depressive Symptoms in Inpatients Treated for Stress-Related Depression

Published Online:https://doi.org/10.1027/0269-8803/a000299

Abstract. Depression is one of the most prevalent mental disorders, with treatment outcomes generally being unsatisfactory. The identification of outcome predictors could contribute to improving diagnosis, treatment, and outcome. Heart rate variability (HRV), an index of cardiovagal activity, has been proposed as a potential correlate of depression as well as a predictor of treatment effectiveness. The aim of the present study was to examine if HRV at baseline could predict the outcome of inpatient treatment for stress-related depressive disorder (SRDD). Depressive symptoms of n = 57 inpatients with an SRDD, who were treated in a specialized burnout ward, were assessed using the Beck Depression Inventory (BDI) at the beginning, the end of treatment, and at 3-month follow-up. HRV (i.e., RMSSD, the root mean square of successive RR interval differences) was determined from a five-minute measurement in the supine position. RMSSD was not significantly associated with the BDI score at the beginning, end, and follow-up. Higher RMSSD was revealed to be a significant predictor of a stronger decrease in depressive severity from the beginning to the end of the treatment. Thereby, the regression model explained 7.6% of the total variance in the BDI decrease. The results revealed initial HRV to predict a larger decrease in depressive severity. Therefore, resting HRV represents a physiological resource and index of successful neurovisceral interaction, which supports inpatients in benefitting from specialized treatment.

References

  • Agelink, M. W., Boz, C., Ullrich, H., & Andrich, J. (2002). Relationship between major depression and heart rate variability: Clinical consequences and implications for antidepressive treatment. Psychiatry Research, 113(1–2), 139–149. https://doi.org/10.1016/s0165-1781(02)00225-1 First citation in articleCrossrefGoogle Scholar

  • Agelink, M. W., Klimke, A., Cordes, J., Sanner, D., Kavuk, I., Malessa, R., Klieser, E., & Baumann, B. (2004). A functional-structural model to understand cardiac autonomic nervous system (ANS) dysregulation in affective illness and to elucidate the ANS effects of antidepressive treatment. European Journal of Medical Research, 9(1), 37–50. First citation in articleGoogle Scholar

  • Agelink, M. W., Majewski, T., Wurthmann, C., Postert, T., Linka, T., Rotterdam, S., & Klieser, E. (2001). Autonomic neurocardiac function in patients with major depression and effects of antidepressive treatment with nefazodone. Journal of Affective Disorders, 62(3), 187–198. https://doi.org/10.1016/S0165-0327(99)00202-5 First citation in articleCrossrefGoogle Scholar

  • Agelink, M. W., Ullrich, H., Baumann, B., Strum, S., & Majewski, T. (2002). Effects of reboxetine, a selective norepinephrine reuptake inhibitor, on sympathetic and parasympathetic outflow to the heart: Preliminary data. Psychopharmacology, 163, 151–156. https://doi.org/10.1007/s00213-002-1146-7 First citation in articleCrossrefGoogle Scholar

  • Ahern, G. L., Sollers, J. J., Lane, R. D., Labiner, D. M., Herring, A. M., Weinand, M. E., Hutzler, R., & Thayer, J. F. (2001). Heart rate and heart rate variability changes in the Intracarotid Sodium Amobarbital Test. Epilepsia, 42, 912–921. First citation in articleCrossrefGoogle Scholar

  • Ambrosecchia, M., Ardizzi, M., Russo, E., Ditaranto, F., Speciale, M., Vinai, P., Todisco, P., Maestro, S., & Gallese, V. (2017). Interoception and autonomic correlates during social interactions: Implications for anorexia. Frontiers in Human Neuroscience, 11, Article 219. https://doi.org/10.3389/fnhum.2017.00219 First citation in articleCrossrefGoogle Scholar

  • Angelovski, A., Sattel, H., Henningsen, P., & Sack, M. (2016). Heart rate variability predicts therapy outcome in pain-predominant multisomatoform disorder. Journal of Psychosomatic Research, 83, 16–21. https://doi.org/10.1016/j.jpsychores.2016.02.003 First citation in articleCrossrefGoogle Scholar

  • Benarroch, E. E. (1997). Central autonomic network: Functional organization and clinical correlations. Futura Publishing Company. First citation in articleGoogle Scholar

  • Bockting, C. L., Hollon, S. D., Jarrett, R. B., Kuyken, W., & Dobson, K. (2015). A lifetime approach to major depressive disorder: The contributions of psychological interventions in preventing relapse and recurrence. Clinical Psychology Review, 41, 16–26. https://doi.org/10.1016/j.cpr.2015.02.003 First citation in articleCrossrefGoogle Scholar

  • Bretherton, B., Atkinson, L., Murray, A., Clancy, J., Deuchars, S., & Deuchars, J. (2019). Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: Potential benefits of daily stimulation. Aging, 11(4), 4836–4857. https://doi.org/10.18632/aging.102074 First citation in articleCrossrefGoogle Scholar

  • Caldwell, Y. T., & Steffen, P. R. (2018). Adding HRV biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder. International Journal of Psychophysiology, 131, 96–101. https://doi.org/10.1016/j.ijpsycho.2018.01.001 First citation in articleCrossrefGoogle Scholar

  • Carnevali, L., Thayer, J. F., Brosschot, J. F., & Ottaviani, C. (2018). Heart rate variability mediates the link between rumination and depressive symptoms: A longitudinal study. International Journal of Psychophysiology, 131, 131–138. https://doi.org/10.1016/j.ijpsycho.2017.11.002 First citation in articleCrossrefGoogle Scholar

  • Carney, R. M., Freedland, K. E., Stein, P. K., Skala, J. A., Hoffman, P., & Jaffe, A. S. (2000). Change in heart rate and heart rate variability during treatment for depression in patients with coronary heart disease. Psychosomatic Medicine, 62(5), 639–647. https://doi.org/10.1097/00006842-200009000-00007 First citation in articleCrossrefGoogle Scholar

  • Castrén, E. (2013). Neuronal network plasticity and recovery from depression. JAMA Psychiatry, 70(9), 983–989. https://doi.org/10.1001/jamapsychiatry.2013.1 First citation in articleCrossrefGoogle Scholar

  • Chambers, A. S., & Allen, J. J. B. (2002). Vagal tone as an indicator of treatment response in major depression. Psychophysiology, 39(6), 861–864. https://doi.org/10.1017/S0048577202010442 First citation in articleCrossrefGoogle Scholar

  • Choi, K. W., Jang, E. H., Kim, A. Y., Fava, M., Mischoulon, D., Papakostas, G. I., Kim, D. J., Kim, K., Yu, H. Y., & Jeon, H. J. (2019). Heart rate variability for treatment response between patients with major depressive disorder versus panic disorder: A 12-week follow-up study. Journal of Affective Disorders, 246, 157–165. https://doi.org/10.1016/j.jad.2018.12.048 First citation in articleCrossrefGoogle Scholar

  • Chu, I.-H., Wu, W.-L., Lin, I.-M., Chan, Y.-K., Lin, Y.-J., & Yang, P.-C. (2017). Effects of yoga on heart rate variability and depressive symptoms in women: A randomized controlled trial. The Journal of Alternative and Complementary Medicine, 23(4), 310–316. https://doi.org/10.1089/acm.2016.0135 First citation in articleCrossrefGoogle Scholar

  • de Graaf, R., Tuithof, M., van Dorsselaer, S., & ten Have, M. (2012). Comparing the effects on work performance of mental and physical disorders. Social Psychiatry and Psychiatric Epidemiology, 47, 1873–1883. https://doi.org/10.1007/s00127-012-0496-7 First citation in articleCrossrefGoogle Scholar

  • Ebert, A., Jochum, T., Ritter, J., Boettger, M. K., Schulz, S., Voss, A., & Bär, K.-J. (2010). Does parasympathetic modulation prior to ECT treatment influence therapeutic outcome? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(7), 1174–1180. https://doi.org/10.1016/j.pnpbp.2010.06.012 First citation in articleCrossrefGoogle Scholar

  • Forte, G., Favieri, F., & Casagrande, M. (2019). Heart rate variability and cognitive function: A systematic review. Frontiers in Neuroscience, 13, Article 710. https://doi.org/10.3389/fnins.2019.00710 First citation in articleCrossrefGoogle Scholar

  • Fraguas, R. Jr., Marci, C., Fava, M., Iosifescu, D. V., Bankier, B., Loh, R., & Dougherty, D. D. (2007). Autonomic reactivity to induced emotion as potential predictor of response to antidepressant treatment. Psychiatry Research, 151(1–2), 169–172. https://doi.org/10.1016/j.psychres.2006.08.008 First citation in articleCrossrefGoogle Scholar

  • Gianaros, P. J., Van Der Veen, F. M., & Jennings, J. R. (2004). Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: Implications for the cortical and subcortical regulation or cardiac autonomic activity. Psychophysiology, 41(4), 521–530. https://doi.org/10.1111/1469-8986.2004.00179.x First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence in the regulation of attention and working memory. International Journal of Psychophysiology, 48(3), 263–274. https://doi.org/10.1016/s0167-8760(03)00073-4 First citation in articleCrossrefGoogle Scholar

  • Hautzinger, M., Bailer, M., Worall, H., & Keller, F. (1995). Beck-Depressions-Inventar (BDI). Testhandbuch [Beck Depression Inventory (BDI). Test manual] (2nd ed.). Hans Huber. First citation in articleGoogle Scholar

  • Hobfoll, S. E., & Lilly, R. S. (1993). Resource conservation as a strategy for community psychology. Journal of Community Psychology, 21(2), 128–148. https://doi.org/10.1002/1520-6629(199304)21:2<128::AID-JCOP2290210206>3.0.CO;2-5 First citation in articleCrossrefGoogle Scholar

  • Hochstrasser, B., Von Bardeleben, U., Ruckstuhl, L., & Soyka, M. (2008). Therapie des Burnout – Theoretischer Hintergrund, Klinik und Darstellung eines stationären multimodalen Behandlungskonzeptes [Burnout therapy – Theory, clinic and concept of a multimodal treatment]. Nervenheilkunde, 27(1), 11–24. https://doi.org/10.1055/s-0038-1627102 First citation in articleGoogle Scholar

  • Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience and Biobehavioral Reviews, 74, 233–255. https://doi.org/10.1016/j.neubiorev.2016.12.032 First citation in articleCrossrefGoogle Scholar

  • Hotzheimer, P. E., & Mayberg, H. S. (2011). Stuck in a rut: Rethinking depression and its treatment. Trends in Neuroscience, 34(1), 1–9. https://doi.org/10.1016/j.tins.2010.10.004 First citation in articleCrossrefGoogle Scholar

  • Jakobsen, J., Hauksson, P., & Vestergaard, P. (1984). Heart rate variation in patients treated with antidepressants. An index of anticholinergic effects? Psychopharmacology, 84(4), 544–548. https://doi.org/10.1007/BF00431464 First citation in articleCrossrefGoogle Scholar

  • Jandackova, V. K., Britton, A., Malik, M., & Steptoe, A. (2016). Heart rate variability and depressive symptoms: A cross-lagged analysis over a 10-year period in the Whitehall II study. Psychological Medicine, 46(10), 2121–2131. https://doi.org/10.1017/S003329171600060X First citation in articleCrossrefGoogle Scholar

  • Karpyak, V. M., Rasmussen, K. G., Hammill, S. C., & Mrazek, D. A. (2004). Changes in heart rate variability in response to treatment with electroconvulsive therapy. Journal of ECT, 20(2), 81–88. https://doi.org/10.1097/00124509-200406000-00002 First citation in articleCrossrefGoogle Scholar

  • Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Browhn, K., & Gatt, J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biological Psychiatry, 67(11), 1067–1074. https://doi.org/10.1016/j.biopsych.2009.12.012 First citation in articleCrossrefGoogle Scholar

  • Kircanski, K., Williams, L. M., & Gotlib, I. H. (2019). Heart rate variability as a biomarker of anxious depression response to antidepressant medication. Depression and Anxiety, 36(1), 63–71. https://doi.org/10.1002/da.22843 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Furley, P., & Schempp, C. (2015). The relationship between working memory, reinvestment, and heart rate variability. Physiology & Behavior, 139, 430–436. https://doi.org/10.1016/j.physbeh.2014.11.036 First citation in articleCrossrefGoogle Scholar

  • La Marca, R., Nedeljkovic, M., Yuan, L., Maercker, A., & Ehlert, U. (2010). Effects of auricular electrical stimulation on vagal activity in healthy men: Evidence from a three-armed randomized trial. Clinical Science, 118, 537–546. https://doi.org/10.1042/CS20090264 First citation in articleCrossrefGoogle Scholar

  • La Marca, R., Waldvogel, P., Thörn, H., Tripod, M., Wirtz, P. H., Pruessner, J., & Ehlert, U. (2011). Association between Cold Face Test-induced vagal inhibition and cortisol response to acute stress. Psychophysiology, 48(3), 420–429. https://doi.org/10.1111/j.1469-8986.2010.01078.x First citation in articleCrossrefGoogle Scholar

  • Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. NeuroImage, 44(1), 213–222. https://doi.org/10.1016/j.neuroimage.2008.07.056 First citation in articleCrossrefGoogle Scholar

  • Licht, C. M. M., Penninx, B. W., & de Geus, E. J. C. (2010). To include or not to include? A response to the meta-analysis of heart rate variability and depression. Biological Psychiatry, 69(4), Article e1. https://doi.org/10.1016/j.biopsych.2010.06.034 First citation in articleCrossrefGoogle Scholar

  • Lischke, A., Lemke, D., Neubert, J., Hamm, A. O., & Lotze, M. (2017). Inter-individual differences in heart rate variability are associated with inter-individual differences in mind-reading. Scientific Reports, 7, Article 11557. https://doi.org/10.1038/s41598-017-11290-1 First citation in articleCrossrefGoogle Scholar

  • Margraf, J. (1994). Mini-DIPS. Diagnostisches Kurz-Interview bei psychischen Störungen. Handbuch [Mini-DIPS. Diagnostic Brief Interview for Mental Disorders. Manual]. Springer. First citation in articleCrossrefGoogle Scholar

  • Marsland, A. L., Gianaros, P. J., Prather, A. A., Jennings, J. R., Neumann, S. A., & Manuck, S. B. (2007). Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosomatic Medicine, 69, 709–716. First citation in articleCrossrefGoogle Scholar

  • Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3, Article e442. First citation in articleCrossrefGoogle Scholar

  • Matthews, S. C., Paulus, M. P., Simmons, A. N., Nelesen, R. A., & Dimsdale, J. E. (2004). Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. NeuroImage, 22, 1151–1156. First citation in articleCrossrefGoogle Scholar

  • Mayberg, H. S. (2003). Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimised treatment. British Medical Bulletin, 65, 193–220. https://doi.org/10.1093/bmb/65.1.193 First citation in articleCrossrefGoogle Scholar

  • McFarlane, A., Kamath, M. V., Fallen, E. L., Malcolm, V., Cherian, F., & Norman, G. (2001). Effect of sertraline on the recovery rate of cardiac autonomic function in depressed patients after acute myocardial infarction. American Heart Journal, 142(4), 617–623. https://doi.org/10.1068/mhj/2001.116766 First citation in articleCrossrefGoogle Scholar

  • Okruszek, L., Dolan, K., Lawrence, M., & Cella, M. (2017). The beat of social cognition: Exploring the role of heart rate variability as marker of mentalizing abilities. Social Neuroscience, 12, 489–493. https://doi.org/10.1080/17470919.2016.1244113 First citation in articleCrossrefGoogle Scholar

  • Ondicova, K., Pecenak, J., & Mravec, B. (2009). The role of the vagus nerve in depression. Neuroendocrinology Letters, 31, 602–608. First citation in articleGoogle Scholar

  • Ottaviani, C., Shahabi, L., Tarvainen, M., Cook, I., Abrams, M., & Shapiro, D. (2015). Cognitive, behavioral, and autonomic correlates of mind wandering and perseverative cognition in major depression. Frontiers in Neuroscience, 8, Article 433. https://doi.org/10.3389/fnins.2014.00433 First citation in articleCrossrefGoogle Scholar

  • Palazidou, E. (2012). The neurobiology of depression. British Medical Bulletin, 101, 127–145. First citation in articleCrossrefGoogle Scholar

  • Pallich, G., Blättler, L., Gomez Penedo, J. M., grosse Holtforth, M., & Hochstrasser, B. (2020). Emotional competence predicts outcome of an inpatient treatment program for burnout. Journal of Affective Disorders, 274, 949–954. https://doi.org/10.1016/j.jad.2020.05.139 First citation in articleCrossrefGoogle Scholar

  • Pallich, G., grosse Holtforth, M., & Hochstrasser, B. (2021). Burnout subtypes: Psychological characteristics, standardized diagnoses and symptoms course to identify aftercare needs. Clinical Psychology in Europe, 3(3), 1–22. https://doi.org/10.32872/cpe.3819 First citation in articleCrossrefGoogle Scholar

  • Paniccia, M., Paniccia, D., Thomas, S., Taha, T., & Reed, N. (2017). Clinical and non-clinical depression and anxiety in young people: A scoping review on heart rate variability. Autonomic Neuroscience: Basic and Clinical, 208, 1–14. https://doi.org/10.1016/j.autneu.2017.08.008 First citation in articleCrossrefGoogle Scholar

  • Pawlowski, M. A., Gazea, M., Wollweber, B., Dresler, M., Holsboer, F., Keck, M. E., Steiger, A., Damczyk, M., & Mikoteit, T. (2017). Heart rate variability and cordance in rapid eye movement sleep as biomarkers of depression and treatment response. Journal of Psychiatric Research, 92, 64–73. https://doi.org/10.1016/j.jpsychires.2017.03.026 First citation in articleCrossrefGoogle Scholar

  • Penttila, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., Coffeng, R., & Scheinin, H. (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clinical Physiology, 21(3), 365–376. https://doi.org/10.1046/j.1365-2281.2001.00337.x First citation in articleCrossrefGoogle Scholar

  • Perna, G., Riva, A., Defillo, A., Sangiorgio, E., Nobile, M., & Caldirola, D. (2020). Heart rate variability: Can it serve as a marker of mental health resilience? Journal of Affective Disorders, 263, 754–761. https://doi.org/10.1016/j.jad.2019.10.017 First citation in articleCrossrefGoogle Scholar

  • Petrocchi, N., & Cheli, S. (2019). The social brain and heart rate variability: Implications for psychotherapy. Psychology and Psychotherapy, 92(2), 208–223. https://doi.org/10.1111/papt.12224 First citation in articleCrossrefGoogle Scholar

  • Pichon, A., Nuissier, F., & Chapelot, D. (2010). Heart rate variability and depressed mood in physical education students: A longitudinal study. Autonomic Neuroscience: Basic and Clinical, 156(1–2), 117–123. https://doi.org/10.1016/j.autneu.2010.03.019 First citation in articleCrossrefGoogle Scholar

  • Pollatos, O., Yeldesbay, A., Pikovsky, A., & Rosenblum, M. (2014). How much time has passed? Ask your heart. Frontiers in Neurorobotics, 8, 1–9. https://doi.org/10.3389/fnbot.2014.00015 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42(2), 123–146. https://doi.org/10.1016/S0167-8760(01)00162-3 First citation in articleCrossrefGoogle Scholar

  • Quintana, D. S., Guastella, A. J., Outhred, T., Hickie, I. B., & Kemp, A. H. (2012). Heart rate variability is associated with emotion recognition: Direct evidence for a relationship between the autonomic nervous system and social cognition. International Journal of Psychophysiology, 86(2), 168–172. https://doi.org/10.1016/j.ijpsycho.2012.08.012 First citation in articleCrossrefGoogle Scholar

  • Ramana, R., Paykel, E. S., Cooper, Z., Hayhurst, H., Saxty, M., & Surtees, P. G. (1995). Remission and relapse in major depression: A two-year prospective follow-up study. Psychological Medicine, 25(6), 1161–1170. https://doi.org/10.1017/S0033291700033134 First citation in articleCrossrefGoogle Scholar

  • Rechlin, T., Claus, D., & Weis, M. (1994). Heart rate analysis in 24 patients treated with 150 mg amitriptyline per day. Psychopharmacology, 116(1), 110–114. https://doi.org/10.1007/BF02244880 First citation in articleCrossrefGoogle Scholar

  • Rechlin, T., Weis, M., & Claus, D. (1994). Heart rate variability in depressed patients and differential effects of paroxetine and amitriptyline on cardiovascular autonomic functions. Pharmacopsychiatry, 27(3), 124–128. https://doi.org/10.1055/s-2007-1014291 First citation in articleCrossrefGoogle Scholar

  • Rottenberg, J. (2007). Cardiac vagal control in depression: A critical analysis. Biological Psychology, 74(2), 200–211. https://doi.org/10.1016/j.biopsycho.2005.08.010 First citation in articleCrossrefGoogle Scholar

  • Rottenberg, J., Salomon, K., Gross, J. J., & Gotlib, I. H. (2005). Vagal withdrawal to a sad film predicts subsequent recovery from depression. Psychophysiology, 42(3), 277–281. https://doi.org/10.1111/j.1469-8986.2005.00289.x First citation in articleCrossrefGoogle Scholar

  • Rottenberg, J., Wilhelm, F. H., Gross, J. J., & Gotlib, I. H. (2002). Respiratory sinus arrhythmia as a predictor of outcome in major depressive disorder. Journal of Affective Disorders, 71(1–3), 265–272. https://doi.org/10.1016/S0165-0327(01)00406-2 First citation in articleCrossrefGoogle Scholar

  • Roy, A., & Campbell, M. K. (2013). A unifying framework for depression: Bridging the major biological and psychosocial theories through stress. Clinical & Investigative Medicine, 36, E170–E190. https://doi.org/10.25011/cim.v36i4.19951 First citation in articleCrossrefGoogle Scholar

  • Sandercock, G. R. H., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: Inferences from meta-analysis. Medicine & Science in Sports & Exercise, 37(3), 433–439. https://doi.org/10.1249/01.MSS.0000155388.39002.9D First citation in articleCrossrefGoogle Scholar

  • Schultz, S. K., Anderson, E. A., & van de Borne, P. (1997). Heart rate variability before and after treatment with electroconvulsive therapy. Journal of Affective Disorders, 44(1), 13–20. https://doi.org/10.1016/S0165-0327(97)01443-2 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, Article 258. https://doi.org/10.3389/fpubh.2017.00258 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, Article 1040. https://doi.org/10.3389/fpsyg.2014.01040 First citation in articleCrossrefGoogle Scholar

  • Shapiro, D., Cook, I. A., Davydov, D. M., Ottaviani, C., Leuchter, A. F., & Abrams, M. (2007). Yoga as a complementary treatment of depression: Effects of traits and moods on treatment outcome. Evidence-Based Complementary and Alternative Medicine, 4(4), 493–502. https://doi.org/10.1093/ecam/nel114 First citation in articleCrossrefGoogle Scholar

  • Sobocki, P., Jönsson, B., Angst, J., & Rehnberg, C. (2006). Cost of depression in Europe. Journal of Mental Health Policy and Economics, 9(2), 87–98. First citation in articleGoogle Scholar

  • Soder, H. E., Wardle, M. C., Schmitz, J. M., Lane, S. D., Green, C., & Vujanovic, A. A. (2019). Baseline resting heart rate variability predicts post‐traumatic stress disorder treatment outcomes in adults with co‐occurring substance use disorders and post‐traumatic stress. Psychophysiology, 56, Article e13377. https://doi.org/10.1111/psyp.13377 First citation in articleCrossrefGoogle Scholar

  • Spangler, D. P., Dunn, E. J., Aldao, A., Feeling, N. R., Free, M. L., Gillie, B. L., Vasey, M. W., Williams, D. P., Koenig, J., & Thayer, J. F. (2021). Gender matters: Nonlinear relationships between heart rate variability and depression and positive affect. Frontiers in Neuroscience, 15, Article 612566. https://doi.org/10.3389/fnins.2021.612566 First citation in articleCrossrefGoogle Scholar

  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. First citation in articleCrossrefGoogle Scholar

  • Taylor, C. B. (2010). Depression, heart rate related variables and cardiovascular disease. International Journal of Psychophysiology, 78(1), 80–88. https://doi.org/10.1016/j.ijpsycho.2010.04.006 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. (2008). Vagal tone and the inflammatory reflex. Cleveland Clinical Journal of Medicine, 76(4 suppl 2), S23–S26. https://doi.org/10.3949/ccjm.76.s2.05 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. 3rd, & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., & Fischer, J. E. (2008). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: Evidence for the cholinergic anti-inflammatory pathway in healthy human adults. Journal of Internal Medicine, 265(4), 439–447. https://doi.org/10.1111/j.1365-2796.2008.02023.x First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hall, M., Sollers, J. J. III, & Fischer, J. E. (2006). Alcohol use, urinary cortisol, and heart rate variability in apparently healthy men: Evidence for impaired inhibitory control of the HPA axis in heavy drinkers. International Journal of Psychophysiology, 59(3), 244–250. https://doi.org/10.1016/j.ijpsycho.2005.10.013 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Smith, M., Rossy, L. A., Sollers, J. J., & Friedman, B. H. (1998). Heart period variability and depressive symptoms: Gender differences. Biological Psychiatry, 44, 304–306. https://doi.org/10.1016/S0006-3223(98)00008-0 First citation in articleCrossrefGoogle Scholar

  • Tomonaga, Y., Haettenschwiler, J., Hatzinger, M., Holsboer-Trachsler, E., Rufer, M., Hepp, U., & Szucs, T. D. (2013). The economic burden of depression in Switzerland. Pharmacoeconomics, 31(3), 237–250. https://doi.org/10.1007/s40273-013-0026-9 First citation in articleCrossrefGoogle Scholar

  • Tyagi, A., & Cohen, M. (2016). Yoga and heart rate variability: A comprehensive review of the literature. International Journal of Yoga, 9(2), 97–113. https://doi.org/10.4103/0973-6131.183712 First citation in articleCrossrefGoogle Scholar

  • van der Kooy, K. G., van Hout, H. P. J., van Marwijk, H. W. J., de Haan, M., Stehouwer, C. D. A., & Beekman, A. T. F. (2006). Differences in heart rate variability between depressed and non-depressed elderly. International Journal of Geriatric Psychiatry, 21(2), 147–150. https://doi.org/10.1002/gps.1439 First citation in articleCrossrefGoogle Scholar

  • Vazquez, L., Blood, J. D., Chaplin, T. M., Hommer, R. E., Rutherford, H. J. V., Potenza, M. N., Mayes, L. C., & Crowley, M. (2016). High frequency heart-rate variability predicts adolescent depressive symptoms, particularly anhedonia, across one year. Journal of Affective Disorders, 196, 243–247. https://doi.org/10.1016/j.jad.2016.02.040 First citation in articleCrossrefGoogle Scholar

  • Vujanovic, A. A., Smith, L. J., Tipton, K. P., & Schmitz, J. M. (2019). A novel, integrated cognitive-behavioral therapy for co-occurring posttraumatic stress and substance use disorders: A case study. Cognitive and Behavioral Practice, 26(2), 307–322. https://doi.org/10.1016/j.cbpra.2018.03.003 First citation in articleCrossrefGoogle Scholar

  • Wendt, J., Hamm, A. P., Pané-Farré, C. A., Thayer, J. F., Gerlach, A., Gloster, A. T., Lang, T., Helbig-Lang, S., Pauli, P., Fydrich, T., Ströhle, A., Kricher, T., Arolt, V., Deckert, J., Wittchen, H.-U., & Richter, J. (2018). Pretreatment cardiac vagal tone predicts dropout from and residual symptoms after exposure therapy in patients with panic disorder and agoraphobia. Psychotherapy and Psychosomatics, 87, 187–189. https://doi.org/10.1159/000487599 First citation in articleCrossrefGoogle Scholar

  • Wheat, A. L., & Larkin, K. T. (2010). Biofeedback of heart rate variability and related physiology: A critical review. Applied Psychophysiology and Biofeedback, 35, 229–242. https://doi.org/10.1007/s10484-010-9133-y First citation in articleCrossrefGoogle Scholar

  • Willner, P., Scheel-Krüger, J., & Belzung, C. (2013). The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, 37(10), 2331–2371. https://doi.org/10.1016/j.neubiorev.2012.12.007 First citation in articleCrossrefGoogle Scholar

  • Xin, W., Wei, W., & Li, X. Y. (2013). Short-term effects of fish-oil supplementation on heart rate variability in humans: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 97(5), 926–935. https://doi.org/10.3945/ajcn.112.049833 First citation in articleCrossrefGoogle Scholar

  • Yaroslavsky, I., Rottenberg, J., Bylsma, L. M., Jennings, J. R., Geroge, C., Baji, I., Dochnat, R., Halas, K., Kapornai, K., Kiss, E., Makai, A., Varga, H., Vetro, A., & Kovacs, M. (2016). Parasympathetic nervous system activity predicts mood repair use and its effectiveness among adolescents with and without histories of major depression. Journal of Abnormal Psychology, 125(3), 323–336. https://doi.org/10.1037/abn0000149 First citation in articleCrossrefGoogle Scholar

  • Yaroslavsky, I., Rottenberg, J., & Kovacs, M. (2013). The utility of combining RSA indices in depression prediction. Journal of Abnormal Psychology, 122(2), 314–321. https://doi.org/10.1037/a0032385 First citation in articleCrossrefGoogle Scholar

  • Yeragani, V. K., Pohl, R., Balon, R., Ramesh, C., Glitz, D., Weinberg, P., & Merlos, B. (1992). Effect of imipramine treatment on heart rate variability measures. Neuropsychobiology, 26(1–2), 27–32. https://doi.org/10.1159/000118892 First citation in articleCrossrefGoogle Scholar

  • Young, H. A., & Benton, D. (2018). Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behavioural Pharmacology, 29(2–3), 140–151. https://doi.org/10.1097/FBP.0000000000000383 First citation in articleCrossrefGoogle Scholar