Skip to main content
Original Articles and Reviews

Age Differences in Eye Movements During Reading: Degenerative Problems or Compensatory Strategy?

A Meta-Analysis

Published Online:https://doi.org/10.1027/1016-9040/a000344

Abstract. We report the results of a meta-analysis of 22 experiments comparing the eye movement data obtained from young (Mage = 21 years) and old (Mage = 73 years) readers. The data included six eye movement measures (mean gaze duration, mean fixation duration, total sentence reading time, mean number of fixations, mean number of regressions, and mean length of progressive saccade eye movements). Estimates were obtained of the typified mean difference, d, between the age groups in all six measures. The results showed positive combined effect size estimates in favor of the young adult group (between 0.54 and 3.66 in all measures), although the difference for the mean number of fixations was not significant. Young adults make in a systematic way, shorter gazes, fewer regressions, and shorter saccadic movements during reading than older adults, and they also read faster. The meta-analysis results confirm statistically the most common patterns observed in previous research; therefore, eye movements seem to be a useful tool to measure behavioral changes due to the aging process. Moreover, these results do not allow us to discard either of the two main hypotheses assessed for explaining the observed aging effects, namely neural degenerative problems and the adoption of compensatory strategies.

References References marked with an * are those that were included in the meta-analysis reported here.

  • Allen, P. A., Smith, A. F., Lien, M. C., Kaut, K. P. & Canfield, A. (2009). A multistream model of visual word recognition. Attention, Perception, & Psychophysics, 71, 281–296. https://doi.org/10.3758/APP.71.2.281. First citation in articleCrossrefGoogle Scholar

  • Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L. & Griggs, D. S. (1988). Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America A, 5, 2210–2219. https://doi.org/10.1364/JOSAA.5.002210. First citation in articleCrossrefGoogle Scholar

  • Borenstein, M. (2009). Effect sizes for continuous data. In H. CooperL. V. HedgesJ. C. ValentineEds., The handbook of research synthesis (2nd ed.., pp. 221–235). New York, NY: Russell Sage Foundation. First citation in articleGoogle Scholar

  • Borenstein, M., Hedges, L. V., Higgins, J. & Rothstein, H. R. (2010). A basic introduction to fixed – effect and random – effects models for meta – analysis. Research Synthesis Methods, 1, 97–111. https://doi.org/10.1002/jrsm.12. First citation in articleCrossrefGoogle Scholar

  • Botella, J. & Sánchez-Meca, J. (2015). Meta-análisis en Ciencias Sociales y de la Salud. [Meta-analysis in Social Sciences and Health]. Madrid, Spain: Editorial Síntesis. First citation in articleGoogle Scholar

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in old adults: The HAROLD Model. Psychology and Aging, 17, 85–100. https://doi.org/10.1037/0882-7974.17.1.85. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R., Anderson, N. D., Locantore, J. K. & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17, 1394–1402. https://doi.org/10.1006/nimg.2002.1280. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., … Craik, F. I. (1997). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience, 17, 391–400. https://doi.org/10.1162/089892900561832. First citation in articleCrossrefGoogle Scholar

  • Dowiasch, S., Marx, S., Einhäuser, W. & Bremmer, F. (2015). Effects of aging on eye movements in the real world. Frontiers in Human Neuroscience, 9, 46. https://doi.org/10.3389/fnhum.2015.00046. First citation in articleCrossrefGoogle Scholar

  • Elliot, D. B., Yang, K. C. & Whitaker, D. (1995). Visual acuity changes throughout adulthood in normal, healthy eyes: Seeing beyond 6/6. Optometry & Vision Science, 72, 186–191. First citation in articleCrossrefGoogle Scholar

  • Gleser, L. J. & Olkin, I. (2009a). Stochastically dependent effect sizes. In H. CooperL. V. HedgesJ. C. ValentineEds., The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York, NY: Russell Sage Foundation. First citation in articleGoogle Scholar

  • Gleser, L. J. & Olkin, I. (2009b). The Metafor Package: A meta-analysis package for R. Gleser & Olkin (2009). Recovered from http://www.metafor-project.org/doku.php/analyses:gleser2009 First citation in articleGoogle Scholar

  • Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–128. First citation in articleCrossrefGoogle Scholar

  • Hedges, L. V. & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3, 486–504. https://doi.org/10.1037/1082-989X.3.4.486. First citation in articleCrossrefGoogle Scholar

  • Higgins, J. P. T.Green, S. (Eds.) (2011). Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Retrieved from www.handbook.cochrane.org First citation in articleGoogle Scholar

  • Huedo-Medina, T. B., Sánchez-Meca, J., Marín-Martínez, F. & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11, 193–206. https://doi.org/10.1037/1082-989X.11.2.193. First citation in articleCrossrefGoogle Scholar

  • Hyönä, J., Lorch, R. F. Jr. & Rinck, M. (2003). Eye movement measures to study global text processing. In J. HyönäR. RadachH. DeubelEds., The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 313–334). Amsterdam, The Netherlands: Elsevier Science. First citation in articleGoogle Scholar

  • IntHout, J., Ioannidis, J. P. & Borm, G. F. (2014). The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Medical Research Methodology, 14, 25. https://doi.org/10.1186/1471-2288-14-25. First citation in articleCrossrefGoogle Scholar

  • *Jordan, T. R., McGowan, V. A. & Paterson, K. B. (2014). Reading with filtered fixations: Adult age differences in the effectiveness of low-level properties of text within central vision. Psychology and Aging, 29, 229–235. https://doi.org/10.1037/a0035948. First citation in articleCrossrefGoogle Scholar

  • Just, M. A. & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8, 441–480. https://doi.org/10.1016/0010-0285(76)90015-3. First citation in articleCrossrefGoogle Scholar

  • *Kemper, S., Crow, A. & Kemtes, K. (2004). Eye-fixation patterns of high-and low-span young and older adults: Down the garden path and back again. Psychology and Aging, 19, 157–170. https://doi.org/10.1037/0882-7974.19.1.157. First citation in articleCrossrefGoogle Scholar

  • *Kemper, S. & Liu, C. J. (2007). Eye movements of young and older adults during reading. Psychology and Aging, 22, 84–93. https://doi.org/10.1037/0882-7974.22.1.84. First citation in articleCrossrefGoogle Scholar

  • *Kemper, S. & McDowd, J. (2006). Eye movements of young and older adults while reading with distraction. Psychology and Aging, 2, 32–39. https://doi.org/10.1037/0882-7974.21.1.32. First citation in articleCrossrefGoogle Scholar

  • *Kemper, S., McDowd, J., Metcalf, K. & Liu, C. J. (2008). Young and older adults’ reading of distracters. Educational Gerontology, 34, 489–502. https://doi.org/10.1080/03601270-701835858. First citation in articleCrossrefGoogle Scholar

  • *Kliegl, R., Grabner, E., Rolfs, M. & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16, 262–284. https://doi.org/10.1080/09541440340000213. First citation in articleCrossrefGoogle Scholar

  • Kostons, D., Van Gog, T. & Paas, F. (2009). How do I do? Investigating effects of expertise and performance-process records on self-assessment. Applied Cognitive Psychology, 23, 1256–1265. https://doi.org/10.1002/acp.1528. First citation in articleCrossrefGoogle Scholar

  • *McGowan, V. A., White, S. J., Jordan, T. R. & Paterson, K. B. (2013). Aging and the use of interword spaces during reading: Evidence from eye movements. Psychonomic Bulletin & Review, 21, 740–747. https://doi.org/10.3758/s13423-013-0527-8. First citation in articleCrossrefGoogle Scholar

  • *McGowan, V. A., White, S. J. & Paterson, K. B. (2015). The effects of interword spacing on the eye movements of young and older readers. Journal of Cognitive Psychology, 27, 609–621. https://doi.org/10.1080/20445911.2014.988157. First citation in articleCrossrefGoogle Scholar

  • Miller, L. M. S. & Stine-Morrow, E. A. (1998). Aging and the effects of knowledge on on-line reading strategies. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 53, 223–233. First citation in articleCrossrefGoogle Scholar

  • Murray, W. S. & Kennedy, A. (1988). Spatial coding in the processing of anaphor by good and poor readers: Evidence from eye movement analyses. The Quarterly Journal of Experimental Psychology, 40, 693–718. https://doi.org/10.1080/14640748808402294. First citation in articleCrossrefGoogle Scholar

  • O’Regan, J. K. (1990). Eye movements and reading. In E. KowlerEd., Eye movements and their role in visual and cognitive processes (pp. 395–453). Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • *Paterson, K. B., McGowan, V. A. & Jordan, T. R. (2012). Filtered text reveals adult age differences in reading: Evidence from eye movements. Psychology and Aging, 28, 352–364. https://doi.org/10.1037/a0030350. First citation in articleCrossrefGoogle Scholar

  • *Paterson, K. B., McGowan, V. A. & Jordan, T. R. (2013a). Effects of adult aging on reading filtered text: Evidence from eye movements. PeerJ, 1, e63. https://doi.org/10.7717/peerj.63. First citation in articleCrossrefGoogle Scholar

  • *Paterson, K. B., McGowan, V. A. & Jordan, T. R. (2013b). Aging and the control of binocular fixations during reading. Psychology and Aging, 28, 789–795. https://doi.org/10.1037/a0033328. First citation in articleCrossrefGoogle Scholar

  • Owsley, C. (2011). Aging and vision. Vision Research, 51, 1610–1622. https://doi.org/10.1016/j.visres.2010.10.020. First citation in articleCrossrefGoogle Scholar

  • R Development Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ First citation in articleGoogle Scholar

  • Raudenbush, S. W. (2009). Analyzing effect sizes: Random-effects models. In H. CooperL. V. HedgesJ. C. ValentineEds., The handbook of research synthesis and meta-analysis (2nd ed., pp. 295–315). New York, NY: Russell Sage Foundation. First citation in articleGoogle Scholar

  • Rayner, K. (1977). Visual attention in reading: Eye movements reflect cognitive processes. Memory & Cognition, 4, 443–448. https://doi.org/10.3758/BF03197383. First citation in articleCrossrefGoogle Scholar

  • Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372–422. https://doi.org/10.1037/0033-2909.124.3.372. First citation in articleCrossrefGoogle Scholar

  • *Rayner, K., Castelhano, M. S. & Yang, J. (2009). Eye movements and the perceptual span in older and younger readers. Psychology and Aging, 24, 755–760. https://doi.org/10.1037/a0014300. First citation in articleCrossrefGoogle Scholar

  • *Rayner, K., Castelhano, M. S. & Yang, J. (2010). Preview benefit during eye fixations in reading for older and younger readers. Psychology and Aging, 25, 714–718. https://doi.org/10.1037/a0019199. First citation in articleCrossrefGoogle Scholar

  • Rayner, K. & McConkie, G. W. (1976). What guides a reader’s eye movements? Vision Research, 16, 829–837. https://doi.org/10.1016/0042-6989(76)90143-7. First citation in articleCrossrefGoogle Scholar

  • *Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C. & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21, 448–465. https://doi.org/10.1037/0882-7974.21.3.448. First citation in articleCrossrefGoogle Scholar

  • Rayner, K., Yang, J., Castelhano, M. S. & Liversedge, S. P. (2011). Eye movements of older and younger readers when reading disappearing text. Psychology and Aging, 26, 214–223. https://doi.org/10.1037/a0021279. First citation in articleCrossrefGoogle Scholar

  • Rayner, K., Yang, J., Schuett, S. & Slattery, T. J. (2013). Eye movements of older and younger readers when reading unspaced text. Experimental Psychology, 60, 354–361. https://doi.org/10.1027/1618-3169/a000207. First citation in articleLinkGoogle Scholar

  • Rayner, K., Yang, J., Schuett, S. & Slattery, T. J. (2014). The effect of foveal and parafoveal masks on the eye movements of older and younger readers. Psychology and Aging, 29, 205–212. https://doi.org/10.1037/a0036015. First citation in articleCrossrefGoogle Scholar

  • Risse, S. & Kliegl, R. (2011). Adult age differences in the perceptual span during reading. Psychology and Aging, 26, 451–460. https://doi.org/10.1037/a0021616. First citation in articleCrossrefGoogle Scholar

  • Sekuler, B., Bennett, P. J. & Mortimer Mamelak, A. (2000). Effects of aging on the useful field of view. Experimental Aging Research, 26, 103–120. https://doi.org/10.1080/036107300243588. First citation in articleCrossrefGoogle Scholar

  • Stine-Morrow, E. A., Loveless, M. K. & Soederberg, L. M. (1996). Resource allocation in on-line reading by younger and older adults. Psychology and Aging, 11, 475–486. First citation in articleCrossrefGoogle Scholar

  • Stine-Morrow, E. A., Miller, L. M. S. & Herzog, C. (2006). Aging and self-regulated language processing. Psychological Bulletin, 132, 582–606. https://doi.org/10.1037/0033-2909.132.4.582. First citation in articleCrossrefGoogle Scholar

  • *Stites, M. C., Federmeier, K. D. & Stine-Morrow, E. A. (2013). Cross-age comparisons reveal multiple strategies for lexical ambiguity resolution during natural reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1823–1841. https://doi.org/10.1037/a0032860. First citation in articleCrossrefGoogle Scholar

  • Vance, D. E., McNees, P. & Meneses, K. (2009). Technology, cognitive remediation, and nursing: directions for successful cognitive aging. Journal of Gerontological Nursing, 35(2), 50–56. https://doi.org/10.3928/00989134-20090201-09. First citation in articleCrossrefGoogle Scholar

  • Viechtbauer, W. (2010a). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. First citation in articleCrossrefGoogle Scholar

  • Viechtbauer, W. (2010b). Metafor: Meta-analysis package for R. R package version 1.4–0. Retrieved from http://CRAN.R-project.org/package=metafor First citation in articleGoogle Scholar

  • Zaroff, C. M., Knutelska, M. & Frumkes, T. E. (2003). Variation in stereoacuity: Normative description, fixation disparity, and the roles of aging and gender. Investigative Ophthalmology & Visual Science, 44, 891–900. https://doi.org/10.1167/iovs.02-0361. First citation in articleCrossrefGoogle Scholar