Skip to main content
Original Articles and Reviews

Artificial Intelligence and Posttraumatic Stress Disorder (PTSD)

An Overview of Advances in Research and Emerging Clinical Applications

Published Online:https://doi.org/10.1027/1016-9040/a000423

Abstract. Posttraumatic stress disorder (PTSD) is a debilitating disease that can occur after experiencing a traumatic event. Despite recent progress in computational research, it has not yet been possible to identify precise and reliable risk factors that enable predictive models of individual risk for posttraumatic stress after trauma. In this overview, we discuss recent advances in the use of Machine Learning (ML) and Artificial Intelligence (AI) for risk stratification and targeted treatment allocation in the context of stress pathologies and we critically review the benefits and challenges of emerging approaches. The vast heterogeneity in the manifestation and the etiology of PTSD is discussed as one major reason for the need to deploy ML-based computational models to better account for individual differences between patients. Striving for personalized medicine is one of the most important goals of current clinical research and is of great potential for the field of posttraumatic stress research. The use of ML is a promising and necessary approach for reaching more personalized treatments and to make further progress in the field of precision psychiatry.

References

  • Almli, L. M., Stevens, J. S., Smith, A. K., Kilaru, V., Meng, Q., Flory, J., Binder, E. B., Bradley, B., Hamilton, S., Jett, M., Yehuda, R., Marmar, C. R., & Ressler, K. J. (2015). A genome-wide identified risk variant for PTSD is a methylation quantitative trait locus and confers decreased cortical activation to fearful faces. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168(5), 327–336. https://doi.org/10.1002/ajmg.b.32315 First citation in articleCrossrefGoogle Scholar

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). APA. First citation in articleCrossrefGoogle Scholar

  • Bahl, M., Barzilay, R., Yedidia, A. B., Locascio, N. J., Yu, L., & Lehman, C. D. (2017). High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology, 286(3), 810–818. https://doi.org/10.1148/radiol.2017170549 First citation in articleCrossrefGoogle Scholar

  • Baltrušaitis, T., Mahmoud, M., & Robinson, P. (2015, May). Cross-dataset learning and person-specific normalisation for automatic action unit detection. Paper presented at the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). https://doi.org/10.1109/FG.2015.7284869 First citation in articleGoogle Scholar

  • Bam, M., Yang, X., Zumbrun, E. E., Zhong, Y., Zhou, J., Ginsberg, J. P., Leyden, Q., Zhang, J., Nagarkatti, P. S., & Nagarkatti, M. (2016). Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Scientific Reports, 6, Article 31209. https://doi.org/10.1038/srep31209 First citation in articleCrossrefGoogle Scholar

  • Bantilan, N., Malgaroli, M., Ray, B., & Hull, T. D. (2020). Just in time crisis response: Suicide alert system for telemedicine psychotherapy settings. Psychotherapy Research. Advance online publication. https://doi.org/10.1080/10503307.2020.1781952 First citation in articleCrossrefGoogle Scholar

  • Benjet, C., Bromet, E., Karam, E., Kessler, R., McLaughlin, K., Ruscio, A., Alonso, J., Atwoli, L., Bunting, B., Bruffaerts, R., Caldas-de-Almeida, J. M., de Girolamo, G., Florescu, S., Gureje, O., Huang, Y., Lepine, J. P., Kawakami, N., Kovess-Masfety, V., Medina-Mora, M. E., … Hill, E. (2016). The epidemiology of traumatic event exposure worldwide: Results from the World Mental Health Survey Consortium. Psychological Medicine, 46(2), 327–343. https://doi.org/10.1017/S0033291715001981 First citation in articleCrossrefGoogle Scholar

  • Biecek, P. (2018). DALEX: Explainers for complex predictive models in R. The Journal of Machine Learning Research, 19(1), 3245–3249. https://doi.org/10.5555/3291125.3309646 First citation in articleGoogle Scholar

  • Bonanno, G. A., Mancini, A. D., Horton, J. L., Powell, T. M., Leard-mann, C. A., Boyko, E. J., Wells, T. S., Hooper, T. I., Gackstetter, G. D., Smith, T. C., & For the Millennium Cohort Study Team. (2012). Trajectories of trauma symptoms and resilience in deployed US military service members: Prospective cohort study. British Journal of Psychiatry, 200(4), 317–323. https://doi.org/10.1192/bjp.bp.111.096552 First citation in articleCrossrefGoogle Scholar

  • Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5–13. https://doi.org/10.1002/wps.20375 First citation in articleCrossrefGoogle Scholar

  • Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231. https://doi.org/10.1214/ss/1009213726 First citation in articleCrossrefGoogle Scholar

  • Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., Cappelli, S., McCarthy, G., Innis, R. B., & Charney, D. S. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – a preliminary report. Biological Psychiatry, 41(1), 23–32. https://doi.org/10.1016/S0006-3223(96)00162-X First citation in articleCrossrefGoogle Scholar

  • Breslau, N. (2012). Epidemiology of posttraumatic stress disorder in adults. In S. D. BeckEd., The Oxford handbook of traumatic stress disorders (pp. 84–97). Oxford University Press. First citation in articleGoogle Scholar

  • Brewin, C., Andrews, B., Rose, S., & Kirk, M. (2014). Acute stress disorder and posttraumatic stress disorder in victims of violent crime. American Journal of Psychiatry, 156, 360–366. https://doi.org/10.1176/ajp.156.3.360 First citation in articleGoogle Scholar

  • Cannizzaro, M., Harel, B., Reilly, N., Chappell, P., & Snyder, P. J. (2004). Voice acoustical measurement of the severity of major depression. Brain and Cognition, 56(1), 30–35. https://doi.org/10.1016/j.bandc.2004.05.003 First citation in articleCrossrefGoogle Scholar

  • Cloitre, M. (2015). The “one size fits all” approach to trauma treatment: Should we be satisfied? European Journal of Psychotraumatology, 6(1), Article 27344. https://doi.org/10.3402/ejpt.v6.27344 First citation in articleCrossrefGoogle Scholar

  • Cohn, J. F., Kruez, T. S., Matthews, I., Yang, Y., Nguyen, M. H., Padilla, M. T., Zhou, F., & De la Torre, F. (2009, September). Detecting depression from facial actions and vocal prosody. Paper presented at the 3rd International Conference on Affective Computing and Intelligent Interaction (ACII) and Workshops. https://doi.org/10.1109/ACII.2009.5349358 First citation in articleGoogle Scholar

  • Dagum, P. (2018). Digital biomarkers of cognitive function. NPJ Digital Medicine, 1(1), Article 10. https://doi.org/10.1038/s41746-018-0018-4 First citation in articleCrossrefGoogle Scholar

  • Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36–48. https://doi.org/10.1080/00031305.1983.10483087 First citation in articleGoogle Scholar

  • Foa, E. B., Keane, T. M., Friedman, M. J., & Cohen, J. A. (2009). Effective treatments for PTSD: Practice guidelines from the International Society for Traumatic Stress Studies (2nd ed.). Guilford Press. First citation in articleGoogle Scholar

  • Forman-Hoffman, V., Middleton, J. C., Feltner, C., Gaynes, B. N., Weber, R. P., Bann, C., Viswanathan, M., Lohr, K. N., Baker, C., & Green, J. (2018). Psychological and pharmacological treatments for adults with posttraumatic stress disorder: A systematic review update. [Internet] (Report No.: 18-EHC011-EFReport No.: 2018-SR-01. PMID:30204376). Agency for Healthcare Research and Quality. First citation in articleGoogle Scholar

  • France, D. J., Shiavi, R. G., Silverman, S., Silverman, M., & Wilkes, M. (2000). Acoustical properties of speech as indicators of depression and suicidal risk. IEEE Transactions on Biomedical Engineering, 47(7), 829–837. https://doi.org/10.1109/10.846676 First citation in articleCrossrefGoogle Scholar

  • Gaebel, W., & Wölwer, W. (1992). Facial expression and emotional face recognition in schizophrenia and depression. European Archive for Psychiatry and Clinical Neuroscience, 242(1), 46–52. https://doi.org/10.1007/BF02190342 First citation in articleCrossrefGoogle Scholar

  • Galatzer-Levy, I. R., Ankri, Y., Freedman, S., Israeli-Shalev, Y., Roitman, P., Gilad, M., & Shalev, A. Y. (2013). Early PTSD symptom trajectories: Persistence, recovery, and response to treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS). PLoS One, 8(8), Article e70084. https://doi.org/10.1371/journal.pone.0070084 First citation in articleCrossrefGoogle Scholar

  • Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636,120 ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8(6), 651–662. https://doi.org/10.1177/1745691613504115 First citation in articleCrossrefGoogle Scholar

  • Galatzer-Levy, I. R., Karstoft, K. I., Statnikov, A., & Shalev, A. Y. (2014). Quantitative forecasting of PTSD from early trauma responses: A machine learning application. Journal of Psychiatric Research, 59, 68–76. https://doi.org/10.1016/j.jpsychires.2014.08.017 First citation in articleCrossrefGoogle Scholar

  • Galatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., & Shalev, A. Y. (2017). Utilization of machine learning for prediction of post-traumatic stress: A re-examination of cortisol in the prediction and pathways to non-remitting PTSD. Translational Psychiatry, 7(3), Article e1070. https://doi.org/10.1038/tp.2017.38 First citation in articleCrossrefGoogle Scholar

  • Galatzer-Levy, I. R., Ruggles, K. V., & Chen, Z. (2018). Data science in the Research Domain Criteria era: Relevance of machine learning to the study of stress pathology, recovery, and resilience. Journal of Chronic Stress, 2, 247054701774755. https://doi.org/10.1177/2470547017747553 First citation in articleCrossrefGoogle Scholar

  • Galatzer-Levy, I. R., Steenkamp, M. M., Brown, A. D., Qian, M., Inslicht, S., Henn-Haase, C., Otter, C., Yehuda, R., Neylan, T. C., & Marmar, C. R. (2014). Cortisol response to an experimental stress paradigm prospectively predicts long-term distress and resilience trajectories in response to active police service. Journal of Psychiatric Research, 56, 36–42. https://doi.org/10.1016/j.jpsychires.2014.04.020 First citation in articleCrossrefGoogle Scholar

  • Gehricke, J.-G., & Shapiro, D. (2000). Reduced facial expression and social context in major depression: Discrepancies between facial muscle activity and self-reported emotion. Psychiatry Research, 95(2), 157–167. https://doi.org/10.1016/S0165-1781(00)00168-2 First citation in articleCrossrefGoogle Scholar

  • Glenn, T., & Monteith, S. (2014). New measures of mental state and behavior based on data collected from sensors, smartphones, and the Internet. Current Psychiatry Reports, 16(12), Article 523. https://doi.org/10.1007/s11920-014-0523-3 First citation in articleCrossrefGoogle Scholar

  • Godleski, L., Darkins, A., & Peters, J. (2012). Outcomes of 98, 609 US Department of Veterans Affairs patients enrolled in telemental health services, 2006–2010. Psychiatric Services, 63(4), 383–385. https://doi.org/10.1176/appi.ps.201100206 First citation in articleCrossrefGoogle Scholar

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). MIT Press. First citation in articleGoogle Scholar

  • Gurovich, Y., Hanani, Y., Bar, O., Fleischer, N., Gelbman, D., Basel-Salmon, L., Krawitz, P., Kamphausen, S. B., Zenker, M., Bird, L. M., Gripp, K. W., & Bird, L. M. (2018). DeepGestalt-identifying rare genetic syndromes using deep learning. arXiv preprint arXiv:1801.07637 First citation in articleGoogle Scholar

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction, Springer Science & Business Media. First citation in articleCrossrefGoogle Scholar

  • Hayes, J. P., Hayes, S. M., & Mikedis, A. M. (2012). Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biology of Mood & Anxiety Disorders, 2(1), Article 9. https://doi.org/10.1186/2045-5380-2-9 First citation in articleCrossrefGoogle Scholar

  • Heim, C., Schultebraucks, K., Marmar, C. R., & Nemeroff, C. B. (2018). Neurobiological pathways involved in fear, stress, and PTSD. In C. HeimC. B. NemeroffEds., Post-traumatic stress disorder (pp. 331–352). Oxford University Press. First citation in articleGoogle Scholar

  • Houtkoop, B. L., Chambers, C., Macleod, M., Bishop, D. V. M., Nichols, T. E., & Wagenmakers, E.-J. (2018). Data sharing in psychology: A survey on barriers and preconditions. Advances in Methods and Practices in Psychological Science, 1(1), 70–85. https://doi.org/10.1177/2515245917751886 First citation in articleCrossrefGoogle Scholar

  • Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404–413. https://doi.org/10.1038/nn.4238 First citation in articleCrossrefGoogle Scholar

  • Insel, T. R. (2017). Digital phenotyping: Technology for a new science of behavior. Journal of the American Medical Association, 318(13), 1215–1216. https://doi.org/10.1001/jama.2017.11295 First citation in articleCrossrefGoogle Scholar

  • Karstoft, K.-I., Galatzer-Levy, I. R., Statnikov, A., Li, Z., & Shalev, A. Y. (2015). Bridging a translational gap: Using machine learning to improve the prediction of PTSD. BMC Psychiatry, 15(1), Article 30. https://doi.org/10.1186/s12888-015-0399-8 First citation in articleCrossrefGoogle Scholar

  • Kendler, K. S. (2005). Toward a philosophical structure for psychiatry. American Journal of Psychiatry, 162(3), 433–440. https://doi.org/10.1176/appi.ajp.162.3.433 First citation in articleCrossrefGoogle Scholar

  • Kessler, R. (2000). Posttraumatic stress disorder: The burden to the individual and to society. Journal of Clinical Psychiatry, 61, 4–14. First citation in articleGoogle Scholar

  • Kessler, R., Berglund, P., Demler, O., Jin, R., Merikangas, K., & Walters, E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 593–602. https://doi.org/10.1001/archpsyc.62.6.593 First citation in articleCrossrefGoogle Scholar

  • Kessler, R., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52(12), 1048–1060. https://doi.org/10.1001/archpsyc.1995.03950240066012 First citation in articleCrossrefGoogle Scholar

  • Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., Mercer, K. B., Mayberg, H. S., Bradley, B., Nemeroff, C. B., Holsboer, F., Heim, C. M., Ressler, K. J., Rein, T., & Bradley, B. (2013). Allele-specific FKBP5 DNA demethylation mediates gene – childhood trauma interactions. Nature Neuroscience, 16(1), 33–41. https://doi.org/10.1038/nn.3275 First citation in articleCrossrefGoogle Scholar

  • Koenen, K. C., Amstadter, A. B., & Nugent, N. R. (2009). Gene-environment interaction in posttraumatic stress disorder: An update. Journal of Traumatic Stress, 22(5), 416–426. https://doi.org/10.1007/s00406-007-0787-2 First citation in articleCrossrefGoogle Scholar

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 First citation in articleCrossrefGoogle Scholar

  • Lee, F.-T., Hull, D., Levine, J., Ray, B., & McKeown, K. (2019, June). Identifying therapist conversational actions across diverse psychotherapeutic approaches. Paper presented at the Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology. First citation in articleGoogle Scholar

  • Leff, J., & Abberton, E. (1981). Voice pitch measurements in schizophrenia and depression. Psychological Medicine, 11(4), 849–852. https://doi.org/10.1017/S0033291700041349 First citation in articleCrossrefGoogle Scholar

  • Liu, Y., Chen, P.-H. C., Krause, J., & Peng, L. (2019). How to read articles that use machine learning: Users’ guides to the medical literature. Journal of the American Medical Association, 322(18), 1806–1816. https://doi.org/10.1001/jama.2019.16489 First citation in articleCrossrefGoogle Scholar

  • Lundberg, S. M., & Lee, S.-I. (2017, December). A unified approach to interpreting model predictions. Paper presented at the Advances in Neural Information Processing Systems. First citation in articleGoogle Scholar

  • Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K., Newman, S., Kim, J., & Lee, S. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0 First citation in articleCrossrefGoogle Scholar

  • Malgaroli, M., Hull, T. D., & Schultebraucks, K. (2021). Digital health and artificial intelligence for post-traumatic stress disorder: Improving treatment delivery through personalization. Psychiatric Annals. First citation in articleGoogle Scholar

  • Malgaroli, M., Hull, T. D., Stirman, S. W., & Resick, P. (2020). Message delivery for the treatment of posttraumatic stress disorder: Longitudinal observational study of symptom trajectories. Journal of Medical Internet Research, 22(4), Article e15587. https://doi.org/10.2196/15587 First citation in articleCrossrefGoogle Scholar

  • Marmar, C. R., Brown, A. D., Qian, M., Laska, E., Siegel, C., Li, M., Abu-Amara, D., Tsiartas, A., Richey, C., Smith, J., Knoth, B., Vergyri, D., & Smith, J. (2019). Speech-based markers for posttraumatic stress disorder in US veterans. Depression and Anxiety, 36(7), 607–616. https://doi.org/10.1002/da.22890 First citation in articleCrossrefGoogle Scholar

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259 First citation in articleCrossrefGoogle Scholar

  • McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836–849. https://doi.org/10.1177/2167702614553230 First citation in articleCrossrefGoogle Scholar

  • Onnela, J.-P., Keshavan, M., Staples, P., Barnett, I., & Torous, J. (2018). 150. Automated longitudinal latent interval estimation with applications to sleep, 83(9, Supplement), S61. https://doi.org/10.1016/j.biopsych.2018.02.168 First citation in articleGoogle Scholar

  • Onnela, J.-P., & Rauch, S. L. (2016). Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology, 41(7), 1691–1696. https://doi.org/10.1038/npp.2016.7 First citation in articleCrossrefGoogle Scholar

  • Ozer, E. J., Best, S. R., Lipsey, T. L., & Weiss, D. S. (2003). Predictors of posttraumatic stress disorder and symptoms in adults: A meta-analysis. Psychology Bulletin, 129(1), 52–73. https://doi.org/10.1037/0033-2909.129.1.52 First citation in articleCrossrefGoogle Scholar

  • Papini, S., Pisner, D., Shumake, J., Powers, M. B., Beevers, C. G., Rainey, E. E., Smits, J. A. J., & Warren, A. M. (2018). Ensemble machine learning prediction of posttraumatic stress disorder screening status after emergency room hospitalization. Journal of Anxiety Disorders, 60, 35–42. https://doi.org/10.1016/j.janxdis.2018.10.004 First citation in articleCrossrefGoogle Scholar

  • Patel, N. M., Michelini, V. V., Snell, J. M., Balu, S., Hoyle, A. P., Parker, J. S., Hayward, M. C., Eberhard, D. A., Salazar, A. H., McNeillie, P., Xu, J., Huettner, C. S., Koyama, T., Utro, F., Rhrissorrakrai, K., Norel, R., Bilal, R., Royyuru, A., Parida, L., … McNeillie, P. (2018). Enhancing next-generation sequencing-guided cancer care through cognitive computing. The Oncologist, 23(2), 179–185. https://doi.org/10.1634/theoncologist.2017-0170 First citation in articleCrossrefGoogle Scholar

  • Petrone, J. (2017). FDA approves stroke-detecting AI software. Nature Biotechnology, 35, 604–605. https://doi.org/10.1038/nbt0418-290 First citation in articleGoogle Scholar

  • Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., Milad, M. R., & Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience, 13(11), 769–787. https://doi.org/10.1038/nrn3339 First citation in articleCrossrefGoogle Scholar

  • Renneberg, B., Heyn, K., Gebhard, R., & Bachmann, S. (2005). Facial expression of emotions in borderline personality disorder and depression. Journal of Behavior Therapy and Experimental Psychiatry, 36(3), 183–196. https://doi.org/10.1016/j.jbtep.2005.05.002 First citation in articleCrossrefGoogle Scholar

  • Ressler, K. J. (2018). Alpha-adrenergic receptors in PTSD – failure or time for precision medicine? New England Journal of Medicine, 378(6), 575–576. https://doi.org/10.1056/NEJMe1716724 First citation in articleCrossrefGoogle Scholar

  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Nothing else matters: Model-agnostic explanations by identifying prediction invariance. arXiv preprint arXiv:1611.05817 First citation in articleGoogle Scholar

  • Rose, S., Bisson, J., Churchill, R., & Wessely, S. (2002). Psychological debriefing for preventing post traumatic stress disorder (PTSD). Cochrane Database Systematic Review, 2, CD000560. https://doi.org/10.1002/14651858.Cd000560 First citation in articleGoogle Scholar

  • Rothbaum, B. O., Kearns, M. C., Reiser, M. E., Davis, M. J. S., Kerley, M. K. A., Rothbaum, A. O., Mercer, K. B., Price, M., Houry, D., & Ressler, K. J. (2014). Early intervention following trauma may mitigate genetic risk for PTSD in civilians: A pilot prospective emergency department study. The Journal of Clinical Psychiatry, 75(12), Article 1380. https://doi.org/10.4088/JCP.13m08715 First citation in articleCrossrefGoogle Scholar

  • Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 First citation in articleGoogle Scholar

  • Schmidt, U. (2015). A plea for symptom-based research in psychiatry. European Journal of Psychotraumatology, 6(1), Article 27660. https://doi.org/10.3402/ejpt.v6.27660 First citation in articleCrossrefGoogle Scholar

  • Schmidt, U., Herrmann, L., Hagl, K., Novak, B., Huber, C., Holsboer, F., Wotjak, C. T., & Buell, D. R. (2013). Therapeutic action of fluoxetine is associated with a reduction in prefrontal cortical miR-1971 expression levels in a mouse model of posttraumatic stress disorder. Frontiers in Psychiatry, 4, Article 66. https://doi.org/10.3389/fpsyt.2013.00066 First citation in articleCrossrefGoogle Scholar

  • Schmidt, U., Kaltwasser, S. F., & Wotjak, C. T. (2013). Biomarkers in posttraumatic stress disorder: Overview and implications for future research. Disease Markers, 35(1), 43–54. https://doi.org/10.1155/2013/835876 First citation in articleCrossrefGoogle Scholar

  • Schmidt, U., Keck, M. E., & Buell, D. R. (2015). miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies. Journal of Psychiatric Research, 65, 1–8. https://doi.org/10.1016/j.jpsychires.2015.03.014 First citation in articleCrossrefGoogle Scholar

  • Schmidt, U., & Vermetten, E. (2017). Integrating NIMH research domain criteria (RDoC) into PTSD research. In E. VermettenD. G. BakerV. B. RisbroughEds., Behavioral neurobiology of PTSD (pp. 69–91). Springer. https://doi.org/10.1007/7854_2017_1 First citation in articleGoogle Scholar

  • Schultebraucks, K., & Galatzer-Levy, I. R. (2019). Machine learning for prediction of posttraumatic stress and resilience following trauma: An overview of basic concepts and recent advances. Journal of Traumatic Stress, 32(2), 215–225. https://doi.org/10.1002/jts.22384 First citation in articleCrossrefGoogle Scholar

  • Schultebraucks, K., Qian, M., Abu-Amara, D., Dean, K., Laska, E., Siegel, C., Misganaw, B., Mellon, S. H., Wolkowitz, O. M., Blessing, E. M., Etkin, A., Ressler, K. J., Doyle, F. J. III, Jett, M., & Marmar, C. R. (2020). Pre-deployment risk factors for PTSD in active-duty personnel deployed to Afghanistan: A machine-learning approach for analyzing multivariate predictors. Molecular Psychiatry, 1–12. https://doi.org/10.1038/s41380–020-0789–2 First citation in articleGoogle Scholar

  • Schultebraucks, K., Shalev, A. Y., Michopoulos, V., Grudzen, C. R., Shin, S.-M., Stevens, J. S., Maples-Keller, J. L., Jovanovic, T., Bonanno, G. A., Rothbaum, B. O., Marmar, C. R., Nemeroff, C. B., Ressler, K. J., & Galatzer-Levy, I. R. (2020). A validated predictive algorithm of post-traumatic stress course following emergency department admission after a traumatic stressor. Nature Medicine, 26, 1084–1088. https://doi.org/10.1038/s41591-020-0951-z First citation in articleCrossrefGoogle Scholar

  • Schultebraucks, K., Yadav, V., Shalev, A. Y., Bonanno, G. A., & Galatzer-Levy, I. R. (2020). Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychological Medicine. Advance online publication. https://doi.org/10.1017/S0033291720002718 First citation in articleCrossrefGoogle Scholar

  • Segman, R. H., Shefi, N., Goltser-Dubner, T., Friedman, N., Kaminski, N., & Shalev, A. Y. (2005). Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Molecular Psychiatry, 10(5), 500–513, 425. https://doi.org/10.1038/sj.mp.4001636 First citation in articleCrossrefGoogle Scholar

  • Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. New England Journal of Medicine, 376(25), 2459–2469. https://doi.org/10.1056/NEJMra1612499 First citation in articleCrossrefGoogle Scholar

  • Shalev, A. Y., Ankri, Y., Gilad, M., Israeli-Shalev, Y., Adessky, R., Qian, M., & Freedman, S. (2016). Long-term outcome of early interventions to prevent posttraumatic stress disorder. The Journal of Clinical Psychiatry, 77(5), e580–e587. https://doi.org/10.4088/JCP.15m09932 First citation in articleCrossrefGoogle Scholar

  • Shalev, A. Y., Ankri, Y., Israeli-Shalev, Y., Peleg, T., Adessky, R., & Freedman, S. (2012). Prevention of posttraumatic stress disorder by early treatment: Results from the Jerusalem Trauma Outreach And Prevention study. Archives of General Psychiatry, 69(2), 166–176. https://doi.org/10.1001/archgenpsychiatry.2011.127 First citation in articleCrossrefGoogle Scholar

  • Shalev, A. Y., Sahar, T., Freedman, S., Peri, T., Glick, N., Brandes, D., Orr, S. P., & Pitman, R. K. (1998). A prospective study of heart rate response following trauma and the subsequent development of posttraumatic stress disorder. Archives of General Psychiatry, 55(6), 553–559. https://doi.org/10.1001/archpsyc.55.6.553 First citation in articleCrossrefGoogle Scholar

  • Skelton, K., Ressler, K. J., Norrholm, S. D., Jovanovic, T., & Bradley-Davino, B. (2012). PTSD and gene variants: New pathways and new thinking. Neuropharmacology, 62(2), 628–637. https://doi.org/10.1016/j.neuropharm.2011.02.013 First citation in articleCrossrefGoogle Scholar

  • Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7 First citation in articleCrossrefGoogle Scholar

  • Torous, J., Andersson, G., Bertagnoli, A., Christensen, H., Cuijpers, P., Firth, J., Haim, A., Hsin, H., Hollis, C., Lewis, S., Mohr, D. C., Pratap, A., Roux, S., Sherrill, J., & Arean, P. A. (2019). Towards a consensus around standards for smartphone apps and digital mental health. World Psychiatry, 18(1), 97–98. https://doi.org/10.1002/wps.20592 First citation in articleCrossrefGoogle Scholar

  • Torous, J., Staples, P., & Onnela, J.-P. (2015). Realizing the potential of mobile mental health: New methods for new data in psychiatry. Current Psychiatry Reports, 17(8), Article 61. https://doi.org/10.1007/s11920-015-0602-0 First citation in articleCrossrefGoogle Scholar

  • Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25. https://doi.org/10.1080/00031305.1980.10482706 First citation in articleGoogle Scholar

  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(86), 2579–2605. First citation in articleGoogle Scholar

  • Vermetten, E., & Bremner, J. D. (2002). Circuits and systems in stress. II. Applications to neurobiology and treatment in posttraumatic stress disorder. Depression and Anxiety, 16(1), 14–38. https://doi.org/10.1002/da.10017 First citation in articleCrossrefGoogle Scholar

  • Vermetten, E., Vythilingam, M., Southwick, S. M., Charney, D. S., & Bremner, J. D. (2003). Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biological Psychiatry, 54(7), 693–702. https://doi.org/10.1016/S0006-3223(03)00634-6 First citation in articleCrossrefGoogle Scholar

  • Walker, E. A., Katon, W., Russo, J., Ciechanowski, P., Newman, E., & Wagner, A. W. (2003). Health care costs associated with posttraumatic stress disorder symptoms in women. Archives of General Psychiatry, 60(4), 369–374. https://doi.org/10.1001/archpsyc.60.4.369 First citation in articleCrossrefGoogle Scholar

  • Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, Article 160018. https://doi.org/10.1038/sdata.2016.18 First citation in articleCrossrefGoogle Scholar

  • World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines, WHO. First citation in articleGoogle Scholar

  • Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356–365. https://doi.org/10.1038/nn.4244 First citation in articleCrossrefGoogle Scholar

  • Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., Hobfoll, S. E., Koenen, K. C., Neylan, T. C., & Hyman, S. E. (2015). Post-traumatic stress disorder. Nature Reviews Disease Primers, 1(1), 1–22. https://doi.org/10.1038/nrdp.2015.57 First citation in articleCrossrefGoogle Scholar

  • Yehuda, R., McFarlane, A., & Shalev, A. (1998). Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biological Psychiatry, 44(12), 1305–1313. https://doi.org/10.1016/S0006-3223(98)00276-5 First citation in articleCrossrefGoogle Scholar