Skip to main content
Original Articles and Reviews

Effects of Media Multitasking and Video Gaming on Cognitive Functions and Their Neural Bases in Adolescents and Young Adults

Published Online:https://doi.org/10.1027/1016-9040/a000477

Abstract. The increasing use of digital technology among adolescents and young adults has led to concerns about possible detrimental effects on cognitive and brain functions. Indeed, as reviewed here, according to behavioral and brain-imaging studies, excessive media multitasking (i.e., using different digital media in parallel) may lead to enhanced distractibility and problems in maintaining attention. However, frequent video gaming may be beneficial for the development of working memory, task switching, and attention skills. All these cognitive skills depend on executive cognitive functions. Still scant but gradually cumulating brain-imaging results suggest that the negative effects of frequent media multitasking and the positive effects of frequent video gaming on cognitive skills in adolescents and young adults are mediated by effects on the frontal lobes, implicated in executive cognitive functions and still developing even through early adulthood.

References

  • Alzahabi, R., & Becker, M. W. (2013). The association between media multitasking, taskswitching, and dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1485–1495. https://doi.org/10.1037/a0031208 First citation in articleCrossrefGoogle Scholar

  • Anderson, M., & Jingjing, J. (2018). Teens, social media and technology 2018. Pew Research Center. http://assets.pewresearch.org/wp-content/uploads/sites/14/2018/05/31102617/PI_2018.05.31_TeensTech_FINAL.pdf First citation in articleGoogle Scholar

  • Baumgartner, S. E., van der Schuur, W. A., Lemmens, J. S., & te Poel, F. (2018). The relationship between media multitasking and attention problems in adolescents: Results of two longitudinal studies. Human Communication Research, 44(1), 3–30. https://doi.org/10.1093/hcre.12111 First citation in articleCrossrefGoogle Scholar

  • Bavelier, D., Achtman, R. L., Mani, M., & Föcker, J. (2012). Neural bases of selective attention in action video game players. Vision Research, 61, 132–143. https://doi.org/10.1016/j.visres.2011.08.007 First citation in articleCrossrefGoogle Scholar

  • Blakemore, S. J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3–4), 296–312. https://doi.org/10.1111/j.1469-7610.2006.01611.x First citation in articleCrossrefGoogle Scholar

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. https://doi.org/10.1016/j.actpsy.2008.09.005 First citation in articleCrossrefGoogle Scholar

  • Cain, M. S., Landau, A. N., & Shimamura, A. P. (2012). Action video game experience reduces the cost of switching tasks. Attention, Perception, & Psychophysics, 74, 641–647. https://doi.org/10.3758/s13414-012-0284-1 First citation in articleCrossrefGoogle Scholar

  • Cain, M. S., Leonard, J. A., Gabrieli, J. D., & Finn, A. S. (2016). Media multitasking in adolescence. Psychonomic Bulletin & Review, 23, 1932–1941. https://doi.org/10.3758/s13423-016-1036-3 First citation in articleCrossrefGoogle Scholar

  • Carr, N. (2010). The shallows: How the Internet is changing the way we think, read, and remember. Atlantic. First citation in articleGoogle Scholar

  • Carrier, L. M., Rosen, L. D., Cheever, N. A., & Lim, A. F. (2015). Causes, effects, and practicalities of everyday multitasking. Developmental Review, 35, 64–78. https://doi.org/10.1016/j.dr.2014.12.005 First citation in articleCrossrefGoogle Scholar

  • Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54(1–3), 241–257. https://doi.org/10.1016/S0301-0511(00)00058-2 First citation in articleCrossrefGoogle Scholar

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004 First citation in articleCrossrefGoogle Scholar

  • Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23(2), 201–216. https://doi.org/10.1016/j.acn.2007.08.010 First citation in articleCrossrefGoogle Scholar

  • Choi, E., Shin, S., Ryu, J., Jung, K., Hyun, Y., Kim, J., & Park, M. (2021). Association of extensive video gaming and cognitive function changes in brain-imaging studies of pro gamers and individuals with gaming disorder: Systematic literature review. JMIR Serious Games, 9(3), Article e25793. https://doi.org/10.2196/25793 First citation in articleCrossrefGoogle Scholar

  • Chopin, A., Bediou, B., & Bavelier, D. (2019). Altering perception: The case of action video gaming. Current Opinion in Psychology, 29, 168–173. https://doi.org/10.1016/j.copsyc.2019.03.004 First citation in articleCrossrefGoogle Scholar

  • Clark, D. B., Tanner-Smith, E. E., & Killingsworth, S. S. (2016). Digital games, design, and learning: A systematic review and meta-analysis. Review of Educational Research, 86(1), 79–122. https://doi.org/10.3102/0034654315582065 First citation in articleCrossrefGoogle Scholar

  • Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59(2), 661–686. https://doi.org/10.1016/j.compedu.2012.03.004 First citation in articleCrossrefGoogle Scholar

  • Colzato, L. S., van Leeuwen, P. J., van den Wildenberg, W., & Hommel, B. (2010). DOOM’d to switch: Superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1, Article 8. https://doi.org/10.3389/fpsyg.2010.00008 First citation in articleCrossrefGoogle Scholar

  • Colzato, L. S., van den Wildenberg, W. P., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77, 234–239. https://doi.org/10.1007/s00426-012-0415-2 First citation in articleCrossrefGoogle Scholar

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750 First citation in articleCrossrefGoogle Scholar

  • Firth, J., Torous, J., Stubbs, B., Firth, J. A., Steiner, G. Z., Smith, L., Alvarez-Jimenez, M., Gleeson, J., Vancampfort, D., Armitage, C. J., & Sarris, J. (2019). The “online brain”: How the Internet may be changing our cognition. World Psychiatry, 18(2), 119–129. https://doi.org/10.1002/wps.20617 First citation in articleCrossrefGoogle Scholar

  • Fomby, P., Goode, J. A., Truong-Vu, K. P., & Mollborn, S. (2019). Adolescent technology, sleep, and physical activity time in two US Cohorts. Youth & Society, 53(4), 585–609. https://doi.org/10.1177/0044118X19868365 First citation in articleCrossrefGoogle Scholar

  • Giedd, J., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863. https://doi.org/10.1038/13158 First citation in articleCrossrefGoogle Scholar

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F. III, Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101 First citation in articleCrossrefGoogle Scholar

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537. https://doi.org/10.1038/nature01647 First citation in articleCrossrefGoogle Scholar

  • Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101(1), 217–245. https://doi.org/10.1016/j.cognition.2005.10.004 First citation in articleCrossrefGoogle Scholar

  • Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28(3), 984–994. https://doi.org/10.1016/j.chb.2011.12.020 First citation in articleCrossrefGoogle Scholar

  • Greenfield, S. (2015). Mind change: How digital technologies are leaving their mark on our brains. Random House. First citation in articleGoogle Scholar

  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – Developmental changes and effects of aging. Brain Research, 163(2), 195–205. https://doi.org/10.1016/0006-8993(79)90349-4 First citation in articleCrossrefGoogle Scholar

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167–178. https://doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z First citation in articleCrossrefGoogle Scholar

  • Karle, J. W., Watter, S., & Shedden, J. M. (2010). Task switching in video game players: Benefits of selective attention but not resistance to proactive interference. Acta Psychologica, 134(1), 70–78. https://doi.org/10.1016/j.actpsy.2009.12.007 First citation in articleCrossrefGoogle Scholar

  • Kobayashi, K., Oishi, N., Yoshimura, S., Ueno, T., Miyagi, T., Murai, T., & Fujiwara, H. (2020). Relationship between media multitasking and functional connectivity in the dorsal attention network. Scientific Reports, 10(1), Article 17992. https://doi.org/10.1038/s41598-020-75091-9 First citation in articleCrossrefGoogle Scholar

  • Kühn, S., & Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Molecular Psychiatry, 19(7), 842–847. https://doi.org/10.1038/mp.2013.100 First citation in articleCrossrefGoogle Scholar

  • Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2014). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 19(2), 265–271. https://doi.org/10.1038/mp.2013.120 First citation in articleCrossrefGoogle Scholar

  • Kühn, S., Gallinat, J., & Mascherek, A. (2019). Effects of computer gaming on cognition, brain structure, and function: A critical reflection on existing literature. Dialogues in Clinical Neuroscience, 21(3), 319–330. https://doi.org/10.31887/DCNS.2019.21.3/skuehn First citation in articleCrossrefGoogle Scholar

  • Kühn, S., Lorenz, R., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., Flor, H., Garavan, H., Ittermann, B., Loth, E., Mann, K., Nees, F., Artiges, E., Tomas, P., Rietschel, M., Smolka, M. N., Ströhle, A., Walaszek, B., Schumann, G., … The IMAGEN Consortium. (2014). Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS One, 9(3), Article e91506. https://doi.org/10.1371/journal.pone.0091506 First citation in articleCrossrefGoogle Scholar

  • Kühn, S., Romanowski, A., Schilling, C., Lorenz, R., Mörsen, C., Seiferth, N., Banaschewski, T., Barbot, A., Barker, G. J., Büchel, C., Conrod, P. J., Dalley, J. W., Flor, H., Garavan, H., Ittermann, B., Mann, K., Martinot, J. L., Paus, T., Rietschel, M., … The IMAGEN Consortium. (2011). The neural basis of video gaming. Translational Psychiatry, 1(11), Article e53. https://doi.org/10.1038/tp.2011.53 First citation in articleCrossrefGoogle Scholar

  • Lui, K. F. H., & Wong, A. C. N. (2012). Does media multitasking always hurt? A positive correlation between multitasking and multisensory integration. Psychonomic Bulletin & Review, 19(4), 647–653. https://doi.org/10.3758/s13423-012-0245-7 First citation in articleCrossrefGoogle Scholar

  • Loh, K. K., & Kanai, R. (2014). Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex. PLoS One, 9(9), Article e106698. https://doi.org/10.1371/journal.pone.0106698 First citation in articleCrossrefGoogle Scholar

  • Madore, K. P., Khazenzon, A. M., Backes, C. W., Jiang, J., Uncapher, M. R., Noricia, A. M., & Wagner, A. D. (2020). Memory failure predicted by attention lapsing and media multitasking. Nature, 587(7832), 87–91. https://doi.org/10.1038/s41586-020-2870-z First citation in articleCrossrefGoogle Scholar

  • May, K. E., & Elder, A. D. (2018). Efficient, helpful, or distracting? A literature review of media multitasking in relation to academic performance. International Journal of Educational Technology in Higher Education, 15(1), Article 13. https://doi.org/10.1186/s41239-018-0096-z First citation in articleCrossrefGoogle Scholar

  • Mayer, R. E. (2019). Computer games in education. Annual Review of Psychology, 70(1), 531–549. https://doi.org/10.1146/annurev-psych-010418-102744 First citation in articleCrossrefGoogle Scholar

  • McDermott, A. F., Bavelier, D., & Green, C. S. (2014). Memory abilities in action video game players. Computers in Human Behavior, 34, 69–78. https://doi.org/10.1016/j.chb.2014.01.018 First citation in articleCrossrefGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734 First citation in articleCrossrefGoogle Scholar

  • Moisala, M., Salmela, V., Hietajärvi, L., Salo, E., Carlson, S., Salonen, O., Lonka, K., Hakkarainen, K., Salmela-Aro, K., & Alho, K. (2016). Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults. NeuroImage, 134, 113–121. https://doi.org/10.1016/j.neuroimage.2016.04.011 First citation in articleCrossrefGoogle Scholar

  • Moisala, M., Salmela, V., Hietajärvi, L., Carlson, S., Vuontela, V., Lonka, K., Hakkarainen, K., Salmela-Aro, K., & Alho, K. (2017). Gaming is related to enhanced working memory performance and task-related cortical activity. Brain Research, 1655, 204–215. https://doi.org/10.1016/j.brainres.2016.10.027 First citation in articleCrossrefGoogle Scholar

  • Moisala, M., Salmela, V., Carlson, S., Salmela-Aro, K., Lonka, K., Hakkarainen, K., & Alho, K. (2018). Neural activity patterns between different executive tasks are more similar in adulthood than in adolescence. Brain and Behavior, 8(9), Article e01063. https://doi.org/10.1002/brb3.1063 First citation in articleCrossrefGoogle Scholar

  • Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23(2), 264–282. https://doi.org/10.1093/cercor/bhs007 First citation in articleCrossrefGoogle Scholar

  • Oei, A. C., & Patterson, M. D. (2013). Enhancing cognition with video games: A multiple game training study. PLoS One, 8(3), Article e58546. https://doi.org/10.1371/journal.pone.0058546 First citation in articleCrossrefGoogle Scholar

  • Ofcom. (2018). The communications market 2018. https://www.ofcom.org.uk/research-and-data/multi-sector-research/cmr/cmr-2018/interactive First citation in articleGoogle Scholar

  • Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15583–15587. https://doi.org/10.1073/pnas.0903620106 First citation in articleCrossrefGoogle Scholar

  • Perrin, A. (2018). 5 facts about Americans and video games. Pew Research Center. https://www.pewresearch.org/fact-tank/2018/09/17/5-facts-about-americans-and-video-games/ First citation in articleGoogle Scholar

  • Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: A meta-analytic investigation. Psychonomic Bulletin & Review, 20(6), 1055–1079. https://doi.org/10.3758/s13423-013-0418-z First citation in articleCrossrefGoogle Scholar

  • Prensky, M. (2001). Digital natives, digital immigrants part 1. On the Horizon, 9(5), 1–6. https://doi.org/10.1108/10748120110424816 First citation in articleCrossrefGoogle Scholar

  • Richlan, F., Schubert, J., Mayer, R., Hutzler, F., & Kronbichler, M. (2018). Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks. Brain and Behavior, 8(1), Article e00877. https://doi.org/10.1002/brb3.877 First citation in articleCrossrefGoogle Scholar

  • Rothbart, M. K., & Posner, M. I. (2015). The developing brain in a multitasking world. Developmental Review, 25, 42–63. https://doi.org/10.1016/j.dr.2014.12.006 First citation in articleCrossrefGoogle Scholar

  • Sanbonmatsu, D. M., Strayer, D. L., Medeiros-Ward, N., & Watson, J. M. (2013). Who multitasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking. PLoS One, 8(1), Article e54402. https://doi.org/10.1371/journal.pone.0054402 First citation in articleCrossrefGoogle Scholar

  • Shin, M., Webb, A., & Kemps, E. (2019). Media multitasking, impulsivity and dual task ability. Computers in Human Behavior, 92, 160–168. https://doi.org/10.1016/j.chb.2018.11.018 First citation in articleCrossrefGoogle Scholar

  • Smith, A., Anderson, M., & Caiazza, T. (2018). Social media use in 2018. Pew Research Center. https://www.pewresearch.org/internet/2018/03/01/social-media-use-in-2018 First citation in articleGoogle Scholar

  • Spitzer, M. (2014). Information technology in education: Risks and side effects. Trends in Neuroscience and Education, 3(3–4), 81–85. https://doi.org/10.1016/j.tine.2014.09.002 First citation in articleCrossrefGoogle Scholar

  • Strobach, T., Frensch, P. A., & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24. https://doi.org/10.1016/j.actpsy.2012.02.001 First citation in articleCrossrefGoogle Scholar

  • Stuss, D., & Alexander, M. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63(3), 289–298. https://doi.org/10.1007/s004269900007 First citation in articleCrossrefGoogle Scholar

  • Uncapher, M. R., & Wagner, A. D. (2018). Minds and brains of media multitaskers: Current findings and future directions. Proceedings of the National Academy of Sciences of the United States of America, 115(40), 9889–9896. https://doi.org/10.1073/pnas.1611612115 First citation in articleCrossrefGoogle Scholar

  • Uncapher, M. R., Thieu, M. K., & Wagner, A. D. (2016). Media multitasking and memory: Differences in working memory and long-term memory. Psychonomic Bulletin & Review, 23(2), 483–490. https://doi.org/10.3758/s13423-015-0907-3 First citation in articleCrossrefGoogle Scholar

  • van der Schuur, W. A., Baumgartner, S. E., Sumter, S. R., & Valkenburg, P. M. (2015). The consequences of media multitasking for youth: A review. Computers in Human Behavior, 53, 204–215. https://doi.org/10.1016/j.chb.2015.06.035 First citation in articleCrossrefGoogle Scholar

  • van der Schuur, W. A., Baumgartner, S. E., Sumter, S. R., & Valkenburg, P. M. (2020). Exploring the long-term relationship between academic-media multitasking and adolescents’ academic achievement. New Media & Society, 22(1), 140–158. https://doi.org/10.1177/1461444819861956 First citation in articleCrossrefGoogle Scholar

  • Wang, H., He, W., Wu, J., Zhang, J., Jin, Z., & Li, L. (2019). A coordinate-based meta-analysis of the n-back working memory paradigm using activation likelihood estimation. Brain and Cognition, 132, 1–12. https://doi.org/10.1016/j.bandc.2019.01.002 First citation in articleCrossrefGoogle Scholar

  • Yap, J. Y., & Lim, S. W. H. (2013). Media multitasking predicts unitary versus splitting visual focal attention. Journal of Cognitive Psychology, 25(7), 889–902. https://doi.org/10.1080/20445911.2013.835315 First citation in articleCrossrefGoogle Scholar

  • Zhang, T., Sun, X., Chai, Y., & Aghajan, H. (2015). A look at task-switching and multi-tasking behaviors: From the perspective of the computer usage among a large number of people. Computers in Human Behavior, 49, 237–244. https://doi.org/10.1016/j.chb.2015.03.012 First citation in articleCrossrefGoogle Scholar

  • Zhou, F., Montag, C., Sariyska, R., Lachmann, B., Reuter, M., Weber, B., Trautner, P., Kendrick, K. M., Markett, S., & Becker, B. (2019). Orbitofrontal gray matter deficits as marker of Internet gaming disorder: Converging evidence from a cross-sectional and prospective longitudinal design. Addiction Biology, 24(1), 100–109. https://doi.org/10.1111/adb.12570 First citation in articleCrossrefGoogle Scholar