Skip to main content
Original Article

Gymnasts and Orienteers Display Better Mental Rotation Performance Than Nonathletes

Published Online:https://doi.org/10.1027/1614-0001/a000180

Abstract. The aim of this study was to examine whether athletes differ from nonathletes regarding their mental rotation performance. Furthermore, it investigated whether athletes doing sports requiring distinguishable levels of mental rotation (orienteering, gymnastics, running), as well as varying with respect to having an egocentric (gymnastics) or an allocentric perspective (orienteering), differ from each other. Therefore, the Mental Rotations Test (MRT) was carried out with 20 orienteers, 20 gymnasts, 20 runners, and 20 nonathletes. The results indicate large differences in mental rotation performance, with those actively doing sports outperforming the nonathletes. Analyses for the specific groups showed that orienteers and gymnasts differed from the nonathletes, whereas endurance runners did not. Contrary to expectations, the mental rotation performance of gymnasts did not differ from that of orienteers. This study also revealed gender differences in favor of men. Implications regarding a differentiated view of the connection between specific sports and mental rotation performance are discussed.

References

  • Chang, Y. K., Labban, J. D., Gapin, J. I. & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. doi: 10.1016/j.brainres.2012.02.068 First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Cooper, L. A. & Shepard, R. N. (1973). The time required to prepare for a rotated stimulus. Memory & Cognition, 1, 246–250. doi: 10.3758/BF03198104 First citation in articleCrossrefGoogle Scholar

  • Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U. & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training – newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature, 427, 311–312. doi: 10.1038/427311a First citation in articleCrossrefGoogle Scholar

  • Frick, A. & Möhring, W. (2013). Mental object rotation and motor development in 8- and 10-month-old infants. Journal of Experimental Child Psychology, 115, 708–720. doi: 10.1016/j.jecp.2013.04.001 First citation in articleCrossrefGoogle Scholar

  • Fuchs, R. (2012). Messung der Bewegungs- und Sportaktivität: Der BSA-Fragebogen [Measurement of physical activity and exercise: The BSA-questionnaire]. Retrieved from http://www.sport.uni-freiburg.de/institut/Arbeitsbereiche/psychologie First citation in articleGoogle Scholar

  • Geary, D. C., Saults, S. J., Liu, F. & Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77, 337–353. doi: 10.1006/jecp.2000.2594 First citation in articleCrossrefGoogle Scholar

  • Geiser, C., Lehmann, W. & Eid, M. (2006). Separating “rotators” from “nonrotators” in the Mental Rotations Test: A multigroup latent class analysis. Multivariate Behavioral Research, 41, 261–293. doi: 10.1207/s15327906mbr4103_2 First citation in articleCrossrefGoogle Scholar

  • Hegarty, M. & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684–689. doi: 10.1037/0022-0663.91.4.684 First citation in articleCrossrefGoogle Scholar

  • Hegarty, M. & Waller, D. A. (2005). Individual differences in spatial abilities. In P. ShahA. MiyakeEds., The Cambridge Handbook of Visuospatial Thinking (pp. 121–169). New York, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Hillman, C. H., Erickson, K. I. & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65. doi: 10.1038/nrn2298 First citation in articleCrossrefGoogle Scholar

  • Jansen, P., Lange, L. F. & Heil, M. (2011). The influence of juggling on mental rotation performance in children. Biomedical Human Kinetics, 3, 18–22. doi: 10.2478/v10101-011-0005-6 First citation in articleCrossrefGoogle Scholar

  • Jansen, P. & Lehmann, J. (2013). Mental rotation performance in soccer players and gymnasts in an object-based mental rotation task. Advances in Cognitive Psychology, 9, 92–98. doi: 10.2478/v10053-008-0135-8 First citation in articleCrossrefGoogle Scholar

  • Jansen, P., Lehmann, J. & Van Doren, J. (2012). Mental rotation performance in male soccer players. PLoS One, 7, e48620. doi: 10.1371/journal.pone.0048620 First citation in articleCrossrefGoogle Scholar

  • Jansen, P. & Pietsch, S. (2010). Physical activity improves mental rotation performance. Creative Education, 1, 58–61. doi: 10.4236/ce.2010.11009 First citation in articleCrossrefGoogle Scholar

  • Jansen, P., Schmelter, A., Kasten, L. & Heil, M. (2011). Impaired mental rotation performance in overweight children. Appetite, 56, 766–769. doi: 10.1016/j.appet.2011.02.021 First citation in articleCrossrefGoogle Scholar

  • Jansen, P., Titze, C. & Heil, M. (2009). The influence of juggling on mental rotation performance. International Journal of Sport Psychology, 40, 351–359. First citation in articleGoogle Scholar

  • Jola, C. & Mast, F. W. (2005). Mental object rotation and egocentric body rotation: Two dissociable processes? Spatial Cognition and Computation, 5, 217–237. First citation in articleCrossrefGoogle Scholar

  • Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M. & Jäncke, L. (2001). Cortical activations during the mental rotation of different visual objects. NeuroImage, 13, 143–152. doi: 10.1006/nimg.2000.0677 First citation in articleCrossrefGoogle Scholar

  • Maeda, Y. & Yoon, S. Y. (2012). A meta-analysis of gender differences in mental rotation ability measured by the Purdue Spatial Visualization Test: Visualization of rotations. Educational Psychology Review, 25, 69–94. doi: 10.1007/s10648-012-9215-x First citation in articleCrossrefGoogle Scholar

  • Moreau, D., Clerc, J., Mansy-Dannay, A. & Guerrien, A. (2012). Enhancing spatial ability through sport practice: Evidence for an effect of motor training on mental rotation performance. Journal of Individual Differences, 33, 83–88. doi: 10.1027/1614-0001/a000075 First citation in articleLinkGoogle Scholar

  • Moreau, D., Mansy-Dannay, A., Clerc, J. & Guerrien, A. (2011). Spatial ability and motor performance: Assessing mental rotation processes in elite and novice athletes. International Journal of Sport Psychology, 42, 525–547. First citation in articleGoogle Scholar

  • Ozel, S., Larue, J. & Molinaro, C. (2002). Relation between sport activity and mental rotation: Comparison of three groups of subjects. Perceptual and Motor Skills, 95, 1141–1154. doi: 10.2466/pms.95.8.1141-1154 First citation in articleCrossrefGoogle Scholar

  • Pelgrims, B., Andres, M. & Olivier, E. (2009). Double dissociation between motor and visual imagery in the posterior parietal cortex. Cerebral Cortex, 19, 2298–2307. doi: 10.1093/cercor/bhn248 First citation in articleCrossrefGoogle Scholar

  • Penedo, F. J. & Dahn, J. R. (2005). Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Current Opinion in Psychiatry, 18, 189–193. doi: 10.1097/00001504-200503000-00013 First citation in articleCrossrefGoogle Scholar

  • Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport & Exercise Psychology, 34, 766–786. First citation in articleCrossrefGoogle Scholar

  • Pesce, C., Crova, C., Cereatti, L., Casella, R. & Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2, 16–22. doi: 10.1016/j.mhpa.2009.02.001 First citation in articleCrossrefGoogle Scholar

  • Peters, M., Chisholm, P. & Laeng, B. (1995). Spatial ability, student gender and academic performance. Journal of Engineering Education, 84, 60–73. doi: 10.1002/j.2168-9830.1995.tb00148.x First citation in articleCrossrefGoogle Scholar

  • Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R. & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test: Different version and factors that affect performance. Brain and Cognition, 28, 39–58. doi: 10.1006/brcg.1995.1032 First citation in articleCrossrefGoogle Scholar

  • Petit, L. S., Pegna, A. J., Mayer, E. & Hauert, C.-A. (2003). Representation of anatomical constraints in motor imagery: Mental rotation of a body segment. Brain and Cognition, 51, 95–101. doi: 10.1016/S0278-2626(02)00526-2 First citation in articleCrossrefGoogle Scholar

  • Rakison, D. H. & Woodward, A. L. (2008). New perspectives on the effects of action on perceptual and cognitive development. Developmental Psychology, 44, 1209–1213. doi: 10.1037/a0012999 First citation in articleCrossrefGoogle Scholar

  • Shepard, R. N. & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703. doi: 10.1126/science.171.3972.701 First citation in articleCrossrefGoogle Scholar

  • Sproston, K. & Primatesta, P. (2003). Health Survey for England 2002: The health of children and young people. London, UK: The Stationery Office. First citation in articleGoogle Scholar

  • Valentine, T. & Bruce, V. (1988). Mental rotation of faces. Memory & Cognition, 16, 556–566. doi: 10.3758/BF03197057 First citation in articleCrossrefGoogle Scholar

  • Vandenberg, S. G. & Kuse, A. P. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604. doi: 10.2466/pms.1978.47.2.599 First citation in articleCrossrefGoogle Scholar

  • Voelcker-Rehage, C., Godde, B. & Staudinger, U. M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Frontiers in Human Neuroscience, 5, 26. doi: 10.3389/fnhum.2011.00026 First citation in articleCrossrefGoogle Scholar

  • Voyer, D., Voyer, S. & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270. doi: 10.1037/0033-2909.117.2.250 First citation in articleCrossrefGoogle Scholar

  • Zacks, J. M., Mires, J., Tversky, B. & Hazeltine, E. (2002). Mental spatial transformation of objects and perspective. Spatial Cognition and Computation, 2, 315–332. First citation in articleCrossrefGoogle Scholar