Skip to main content
Research Article

More Than Hitting the Correct Key Quickly

Spatial Variability in Touch Screen Response Location Under Multitasking in the Serial Reaction Time Task

Published Online:https://doi.org/10.1027/1618-3169/a000446

Abstract. Many studies have documented that multitasking reduces Response Time (RT) indicators of implicit sequence learning as well as the expression of acquired sequence knowledge in RT benefits. In these tasks it is only relevant that the correct key is hit quickly, not where it is hit. We explored how variability in response location is influenced by (a) breaking a repeating sequence of target locations, (b) multitasking demands in the current trial, and (c) presence of multitasking in the block. Participants performed a Serial Reaction Time Task (SRTT) on a touchscreen while shutting down a beep tone by pressing the space bar with their non-dominant hand (throughout Experiment 1 and in the second half of Experiment 2). The first-order sequence of four response locations on the screen was broken by off-sequence deviants in 1/6th of the trials. Our results show a dissociation between RT and response location variability. While the effect of breaking the sequence on RT was larger under single- than under multitasking, breaking the sequence only led to an increase in response location variability under multitasking. Experiment 3 suggested that the impact of sequence knowledge on either aspect of performance in the SRTT is limited by interference from an additional task.

References

  • Abrahamse, E. L., Jiménez, L., Verwey, W. B., & Clegg, B. A. (2010). Representing serial action and perception. Psychonomic Bulletin & Review, 17, 603–623. https://doi.org/10.3758/pbr.17.5.603 First citation in articleCrossref MedlineGoogle Scholar

  • Boisgontier, M. P., Beets, I. A. M., Duysens, J., Nieuwboer, A., Krampe, R. T., & Swinnen, S. P. (2013). Age-related differences in attentional costs associated with postural dual tasks: Increased recruit-ment of generic cognitive resources in older adults. Neuroscience and Biobehavioral Reviews, 37, 1824–1837. https://doi.org/10.1016/j.neubiorev.2013.07.014 First citation in articleCrossref MedlineGoogle Scholar

  • Buckmann, M., Gaschler, R., Höfer, S., Loeben, D., Frensch, P. A., & Brock, O. (2015). Learning to explore the structure of kinematic objects in a virtual environment. Frontiers in Psychology, 6, e374. https://doi.org/10.3389/fpsyg.2015.00374 First citation in articleCrossref MedlineGoogle Scholar

  • Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamic perspective. In R. M. FrenchA. CleeremansEds., Implicit learning and consciousness (pp. 1–40). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 189–202. https://doi.org/10.1037/0278-7393.19.1.189 First citation in articleCrossrefGoogle Scholar

  • Ellenbuerger, T., Boutin, A., Blandin, Y., Shea, C. H., & Panzer, S. (2012). Scheduling observational and physical practice: Influence on the coding of simple motor sequences. The Quarterly Journal of Experimental Psychology, 65, 1260–1273. https://doi.org/10.1080/17470218.2011.654126 First citation in articleCrossrefGoogle Scholar

  • Ewolds, H. E., Bröker, L., de Oliveira, R. F., Raab, M., & Künzell, S. (2017). Implicit and explicit knowledge both improve dual task performance in a continuous pursuit tracking task. Frontiers in Psychology, 8, e2241. https://doi.org/10.3389/fpsyg.2017.02241 First citation in articleCrossref MedlineGoogle Scholar

  • Frensch, P. A., Lin, J., & Buchner, A. (1998). Learning vs behavioral expression of the learned: The effects of a secondary tone-counting task on implicit learning in the Serial Reaction Task. Psychological Research, 61, 83–98. https://doi.org/10.1007/s004260050015 First citation in articleCrossrefGoogle Scholar

  • Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22, 95–110. https://doi.org/10.3758/bf03202765 First citation in articleCrossref MedlineGoogle Scholar

  • Frensch, P. A., Wenke, D., & Rünger, D. (1999). A secondary tone-counting task suppresses performance in the Serial Reaction Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 260–274. https://doi.org/10.1037/0278-7393.25.1.260 First citation in articleCrossrefGoogle Scholar

  • Gaschler, R. (2018, January 18). TouchScreenSRTT. DOI: 10.17605/OSF.IO/P2DF5. Retrieved from https://osf.io/p2df5/ First citation in articleCrossrefGoogle Scholar

  • Gaschler, R., Marewski, J. N., Wenke, D., & Frensch, P. A. (2014). Transferring control demands across incidental learning tasks – Stronger sequence usage in serial reaction task after shortcut option in letter string checking. Frontiers in Psychology, 5, e1388. https://doi.org/10.3389/fpsyg.2014.01388 First citation in articleCrossref MedlineGoogle Scholar

  • Gaveau, V., Pisella, L., Priot, A. E., Fukui, T., Rossetti, Y., Pélisson, D., & Prablanc, C. (2013). Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia, 55, 25–40. https://doi.org/10.1016/j.neuropsychologia.2013.12.005 First citation in articleCrossref MedlineGoogle Scholar

  • Grafton, S. T., Hazeltine, E., & Ivry, R. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510. https://doi.org/10.1162/jocn.1995.7.4.497 First citation in articleCrossref MedlineGoogle Scholar

  • Haider, H., Frensch, P. A., & Joram, D. (2005). Are strategy shifts caused by data-driven processes or by voluntary processes? Consciousness and Cognition, 14, 495–519. https://doi.org/10.1016/j.concog.2004.12.002 First citation in articleCrossref MedlineGoogle Scholar

  • Haider, H., & Rose, M. (2007). How to investigate insight: A proposal. Methods, 42, 49–57. https://doi.org/10.1016/j.ymeth.2006.12.004 First citation in articleCrossref MedlineGoogle Scholar

  • Holmes, N. P., & Dakwar, A. R. (2015). Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency. Vision Research, 117, 105–116. https://doi.org/10.1016/j.visres.2015.08.019 First citation in articleCrossref MedlineGoogle Scholar

  • Janczyk, M. (2017). A common capacity limitation for response and item selection in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 1690–1698. https://doi.org/10.1037/xlm0000408 First citation in articleCrossref MedlineGoogle Scholar

  • Janczyk, M., & Berryhill, M. E. (2014). Orienting attention in visual working memory requires central capacity: Decreased retro-cue effects under dual-task conditions. Attention, Perception, & Psychophysics, 76, 715–724. https://doi.org/10.3758/s13414-013-0615-x First citation in articleCrossref MedlineGoogle Scholar

  • Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence learning? Journal of Experimental Psychology: Learning, Memory and Cognition, 25, 236–259. https://doi.org/10.1037/0278-7393.25.1.236 First citation in articleCrossrefGoogle Scholar

  • Jiménez, L., & Vázquez, G. A. (2005). Sequence learning under dual-task conditions: Alternatives to a resource-based account. Psychological Research, 69, 352–368. https://doi.org/10.1007/s00426-004-0210-9 First citation in articleCrossref MedlineGoogle Scholar

  • Jolicoeur, P. (1999). Dual-task interference and visual encoding. Journal of Experimental Psychology: Human Perception and Performance, 25, 596–616. https://doi.org/10.1037/0096-1523.25.3.596 First citation in articleCrossrefGoogle Scholar

  • Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30. https://doi.org/10.1080/00222895.1995.9941696 First citation in articleCrossrefGoogle Scholar

  • Kemper, M., Umbach, V. J., Schwager, S., Gaschler, R., Frensch, P. A., & Stürmer, B. (2012). Stronger effects of self-generated vs. cue-induced expectations in event-related potentials. Frontiers in Psychology, 3, e562. https://doi.org/10.3389/fpsyg.2012.00562 First citation in articleCrossref MedlineGoogle Scholar

  • Künzell, S., Sießmeir, D., & Ewolds, H. (2016). Validation of the continuous tracking paradigm for studying implicit motor learning. Experimental Psychology, 63, 318–325. https://doi.org/10.1027/1618-3169/a000343 First citation in articleLinkGoogle Scholar

  • Landy, M. S., Trommershäuser, J., & Daw, N. D. (2012). Dynamic estimation of task-relevant variance in movement under risk. Journal of Neuroscience, 32, 12702–12711. https://doi.org/10.1523/jneurosci.6160-11.2012 First citation in articleCrossref MedlineGoogle Scholar

  • Langhanns, C., & Müller, H. (2017). Effects of trying ‘not to move’ instruction on cortical load and concurrent cognitive performance. Psychological Research, 82, 167–176. https://doi.org/10.1007/s00426-017-0928-9 First citation in articleCrossref MedlineGoogle Scholar

  • Li, K. Z. H., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: Age-related differences in compensatory behavior. Psychological Science, 12, 230–237. https://doi.org/10.1111/1467-9280.00341 First citation in articleCrossref MedlineGoogle Scholar

  • Mattler, U. (2005). Combined expectancy effects: An accumulator model. Cognitive Psychology, 51, 214–255. https://doi.org/10.1016/j.cogpsych.2005.05.002 First citation in articleCrossref MedlineGoogle Scholar

  • Mattler, U., van der Lugt, A., & Münte, T. F. (2006). Combined expectancies: Electrophysiological evidence for adjusted expectancy effects. BMC Neuroscience, 7, 37. https://doi.org/10.1186/1471-2202-7-37 First citation in articleCrossref MedlineGoogle Scholar

  • McDowall, J., Lustig, A., & Parkin, G. (1995). Indirect learning of event sequences: The effects of divided attention and stimulus continuity. Canadian Journal of Experimental Psychology, 49, 415–435. https://doi.org/10.1037/1196-1961.49.4.415 First citation in articleCrossref MedlineGoogle Scholar

  • Muenzinger, K. F. (1928). Plasticity and mechanization of the problem box habit in guinea pigs. Journal of Comparative Psychology, 8, 45–69. https://doi.org/10.1037/h0074566 First citation in articleCrossrefGoogle Scholar

  • Nemeth, D., Janacsek, K., Király, K., Londe, Z., Németh, K., Fazekas, K., ... Csányi, A. (2013). Probabilistic sequence learning in mild cognitive impairment. Frontiers in Human Neuroscience, 7, 318. https://doi.org/10.3389/fnhum.2013.00318 First citation in articleCrossref MedlineGoogle Scholar

  • Netick, A., & Klapp, S. T. (1994). Hesitations in manual tracking: A single-channel limit in response programming. Journal of Experimental Psychology: Human Perception and Performance, 20, 766–782. https://doi.org/10.1037/0096-1523.20.4.766 First citation in articleCrossref MedlineGoogle Scholar

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32. https://doi.org/10.1016/0010-0285(87)90002-8 First citation in articleCrossrefGoogle Scholar

  • Paelecke, M., & Kunde, W. (2007). Action-effect codes in and before the central bottleneck: Evidence from the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 33, 627–644. https://doi.org/10.1037/0096-1523.33.3.627 First citation in articleCrossref MedlineGoogle Scholar

  • Panzer, S., Krueger, M., Muehlbauer, T., Kovacs, A. J., & Shea, C. H. (2009). Intermanual transfer and practice: Coding of simple motor sequences. Acta Psychologica, 131, 99–109. https://doi.org/10.1016/j.actpsy.2009.03.004 First citation in articleCrossref MedlineGoogle Scholar

  • Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358–377. https://doi.org/10.1037/0096-1523.10.3.358 First citation in articleCrossref MedlineGoogle Scholar

  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244. https://doi.org/10.1037/0033-2909.116.2.220 First citation in articleCrossref MedlineGoogle Scholar

  • Raab, M., de Oliveira, R. F., Schorer, J., & Hegele, M. (2013). Adaptation of motor control strategies to environmental cues in a pursuit-tracking task. Experimental Brain Research, 228, 155–160. https://doi.org/10.1007/s00221-013-3546-9 First citation in articleCrossref MedlineGoogle Scholar

  • Riby, L. M., Perfect, T. J., & Stollery, B. T. (2004). Evidence for disproportionate dual-task costs in older adults for episodic but not semantic memory. The Quarterly Journal of Experimental Psychology, 57A, 241–267. https://doi.org/10.1080/02724980343000206 First citation in articleCrossrefGoogle Scholar

  • Röttger, E., Haider, H., Zhao, F., & Gaschler, R. (2019). Implicit sequence learning despite multitasking – The role of across-task predictability. Psychological Research, 83, 526–543. https://doi.org/10.1007/s00426-017-0920-4 First citation in articleCrossref MedlineGoogle Scholar

  • Rünger, D., & Frensch, P. A. (2008). How incidental sequence learning creates reportable knowledge: The role of unexpected events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1011–1026. https://doi.org/10.1037/a0012942 First citation in articleCrossref MedlineGoogle Scholar

  • Rünger, D., & Frensch, P. A. (2010). Defining consciousness in the context of incidental sequence learning: Theoretical considerations and empirical implications. Psychological Research, 2, 121–137. https://doi.org/10.1007/s00426-008-0225-8 First citation in articleCrossrefGoogle Scholar

  • Schaefer, S., Jagenow, D., Verrel, J., & Lindenberger, U. (2015). The influence of cognitive load and walking speed on gait regularity in children and young adults. Gait & Posture, 41, 258–262. https://doi.org/10.1016/j.gaitpost.2014.10.013 First citation in articleCrossref MedlineGoogle Scholar

  • Scherbaum, S., Gottschalk, C., Dshemuchadse, M., & Fischer, R. (2015). Action dynamics in multitasking: The impact of additional task factors on the execution of the prioritized motor movement. Frontiers in Psychology, 6, e934. https://doi.org/10.3389/fpsyg.2015.00934 First citation in articleCrossref MedlineGoogle Scholar

  • Schmidtke, V., & Heuer, H. (1997). Task integration as a factor in secondary-task effects on sequence learning. Psychological Research, 60, 53–71. https://doi.org/10.1007/bf00419680 First citation in articleCrossrefGoogle Scholar

  • Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning under dual task conditions. Journal of Experimental Psychology: General, 138, 270–290. https://doi.org/10.1037/a0015378 First citation in articleCrossref MedlineGoogle Scholar

  • Schvaneveldt, R. R., & Gomez, R. L. (1998). Attention and probabilistic sequence learning. Psychological Research, 61, 175–190. https://doi.org/10.1007/s004260050023 First citation in articleCrossrefGoogle Scholar

  • Schwarb, H., & Schumacher, E. H. (2010). Implicit sequence learning is represented by stimulus – Response rules. Memory & Cognition, 38, 677–688. https://doi.org/10.3758/mc.38.6.677 First citation in articleCrossref MedlineGoogle Scholar

  • Schwarb, H., & Schumacher, E. H. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Advances in Cognitive Psychology, 8, 165–178. https://doi.org/10.5709/acp-0113-1 First citation in articleCrossref MedlineGoogle Scholar

  • Shanks, D. R., & Channon, S. (2002). Effects of a secondary task on “implicit” sequence learning: Learning or performance? Psychological Research, 66, 99–109. https://doi.org/10.1007/s00426-001-0081-2 First citation in articleCrossref MedlineGoogle Scholar

  • Shanks, D. R., Wilkinson, L., & Channon, S. (2003). Relationship between priming and recognition in deterministic and probabilistic sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 248. https://doi.org/10.1037/0278-7393.29.2.248 First citation in articleCrossref MedlineGoogle Scholar

  • Stadler, M. A. (1995). Role of attention in implicit learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 674–685. https://doi.org/10.1037/0278-7393.21.3.674 First citation in articleCrossrefGoogle Scholar

  • Strobach, T., Liepelt, R., Pashler, H., Frensch, P. A., & Schubert, T. (2013). Effects of extensive dual-task practice on processing stages in simultaneous choice tasks. Attention, Perception & Psychophysics, 75, 900–920. https://doi.org/10.3758/s13414-013-0451-z First citation in articleCrossref MedlineGoogle Scholar

  • Thorndike, E. L. (1911). Animal intelligence. New York, NY: Macmillan. https://doi.org/10.5962/bhl.title.55072 First citation in articleGoogle Scholar

  • Tsang, S. N. H., & Chan, A. H. S. (2015). Tracking and discrete dual task performance with different spatial stimulus-response mappings. Ergonomics, 58, 368–382. https://doi.org/10.1080/00140139.2014.978901 First citation in articleCrossref MedlineGoogle Scholar

  • Verrel, J., Pologe, S., Manselle, W., Lindenberger, U., & Woollacott, M. (2013). Coordination of degrees of freedom and stabilization of task variables in a complex motor skill: Expertise-related differences in cello bowing. Experimental Brain Research, 224, 323–334. https://doi.org/10.1007/s00221-012-3314-2 First citation in articleCrossref MedlineGoogle Scholar

  • Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584. https://doi.org/10.1037/0033-295x.105.3.558 First citation in articleCrossref MedlineGoogle Scholar