Skip to main content
Original Article

What’s Real About Virtual Reality Flight Simulation?

Comparing the Fidelity of a Virtual Reality With a Conventional Flight Simulation Environment

Published Online:https://doi.org/10.1027/2192-0923/a000134

Abstract. With the help of immersive virtual reality technology, novel cockpit systems can be evaluated with pilots in an early design phase. This comparative study investigates the functional fidelity of a virtual reality flight simulator (VRFS) in comparison with a conventional flight simulator. Pilots’ movement time to reach cockpit controls, deviation from the ideal flight path, workload, and simulator sickness are evaluated using an operational scenario. The results show statistically significant differences in heading, altitude, and flight path, as well as delays in operating the controls in virtual reality. Yet, most participants could safely and reliably complete the flight task. For use cases in which adaptations to pace, exposure time, and flight task are acceptable, which is often the case in early phases of the design process, VRFSs can be viable tools for human factors engineering.

References

  • Aslandere, T. I., Dreyer, D., Pantkratz, F. & Schubotz, R. (2014). A generic virtual reality flight simulator. In G. ZachmannR. WellerA. HinkenjannEds., Virtuelle und Erweiterte Realität, 11. Workshop der GI-Fachgruppe VR/AR (pp. 1–13). Aachen, Germany: Shaker. First citation in articleGoogle Scholar

  • Avila, L. & Bailey, M. (2014). Virtual reality for the masses. IEEE Computer Graphics and Applications, 34(5), 103–104. https://doi.org/10.1109/MCG.2014.103 First citation in articleCrossrefGoogle Scholar

  • Berg, L. P. & Vance, J. M. (2016). Industry use of virtual reality in product design and manufacturing: A survey. Virtual Reality, 1–17. https://doi.org/10.1007/s10055-016-0293-9 First citation in articleGoogle Scholar

  • Brooks, F. P. (1999). What’s real about virtual reality? IEEE Computer Graphics and Applications, 19(6), 16–27. https://doi.org/10.1109/38.799723 First citation in articleCrossrefGoogle Scholar

  • Carmack, J. (2013). Latency mitigation strategies. Retrieved from https://web.archive.org/web/20140719053303/http://www.altdev.co/2013/02/22/latency-mitigation-strategies/ First citation in articleGoogle Scholar

  • Dörr, K.-U., Schiefele, J. & Kubbat, W. (2001). Virtual cockpit simulation for pilot training. In North Atlantic Treaty OrganizationEd., RTO meeting proceedings: Vol. 58. What is essential for virtual reality systems to meet military human performance goals? RTO Human Factors and Medicine Panel (HFM) workshop (pp. 11). Neuilly-sur-Seine, France: RTO, Research and Technology Organization. First citation in articleGoogle Scholar

  • Dreyer, D., Oberhauser, M. & Bandow, D. (2014). HUD symbology evaluation in a virtual reality flight simulation. Proceedings of the International Conference on Human-Computer Interaction in Aerospace ‘14. (9–14) New York, NY: ACM. https://doi.org/10.1145/2669592.2669652 First citation in articleCrossrefGoogle Scholar

  • European Aviation Safety Agency. (2012). Certification specifications for aeroplane flight simulation training devices. (CS-FSTD(A)). Cologne, Germany: Author. First citation in articleGoogle Scholar

  • Farmer, E., Rooij, J. van., Riemersma, J., Jorna, P. & Moraal, J. (1999). Handbook of simulator-based training. Aldershot, UK: Ashgate. First citation in articleGoogle Scholar

  • Hart, S. G. & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology, 52, 139–183. First citation in articleCrossrefGoogle Scholar

  • Heilig, M. L. (1962). US Patent No. 3,050,870. Washington, DC: U.S. Patent and Trademark Office. First citation in articleGoogle Scholar

  • Joyce, R. D. & Robinson, S. K. (2015). The rapidly reconfigurable research cockpit. AIAA Aviation, AIAA Modeling and Simulation Technologies Conference. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2015-2336 First citation in articleCrossrefGoogle Scholar

  • Kaiser, M. K. & Schroeder, J. A. (2002). Flights of fancy: The art and science of flight simulation. In P. S. TsangM. A. VidulichEds., Principles and practices of aviation psychology (pp. 435–471). Mahwah, NJ: Lawrence Erlbaum. First citation in articleGoogle Scholar

  • Kennedy, R. S., Lane, N. E., Berbaum, K. S. & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3 First citation in articleCrossrefGoogle Scholar

  • Le Ngoc, L. & Kalawsky, R. S. (2013). Visual circuit flying with augmented head-tracking on limited field of view flight training devices. Proceedings of the AIAA Modeling and Simulation Technologies Conference 2013. Guidance, Navigation, and Control and Co-located Conference. Reston, VA: American Institute of Aeronautics and Astronautics, 1–16. https://doi.org/10.2514/6.2013-5226 First citation in articleCrossrefGoogle Scholar

  • Lin, J. J.-W., Duh, H. B. L., Abi-Rached, H., Parker, D. E. & Furness, T. A. (2002). Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In B. LoftinJ. X. ChenS. RizzoM. GoebelH. HiroseEds., Proceedings of the IEEE Virtual Reality Conference 2002 (pp. 164–171). Washington, DC: IEEE Computer Society. First citation in articleGoogle Scholar

  • Liu, D., Macchiarella, N. D. & Vincenzi, D. A. (2009). Simulation fidelity. In D. A. VincenziJ. A. WiseM. MoulouaP. A. HancockEds., Human factors in simulation and training (pp. 61–73). Boca Raton, FL: CRC Press. First citation in articleGoogle Scholar

  • Liu, L., Liere, R. van., Nieuwenhuizen, C. & Martens, J.-B. (2009). Comparing aimed movements in the real world and in virtual reality. In A. SteedD. ReinersR. W. LindemannEds., IEEE Virtual Reality Conference, 2009 (pp. 49–54). Piscataway, NJ: IEEE. https://doi.org/10.1109/VR.2009.4811026 First citation in articleGoogle Scholar

  • McCarty, D. W., Sheasby, S., Amburn, P., Stytz, M. R. & Switzer, C. (1994). A virtual cockpit for a distributed interactive simulation. IEEE Computer Graphics and Applications, 14(1). https://doi.org/10.1109/38.250919 First citation in articleCrossrefGoogle Scholar

  • McMahan, R. P., Bowman, D. A., Zielinski, D. J. & Brady, R. B. (2012). Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Transactions on Visualization and Computer Graphics, 18(4), 626–633. https://doi.org/10.1109/TVCG.2012.43 First citation in articleCrossrefGoogle Scholar

  • Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77-D(12), 1321–1329. First citation in articleGoogle Scholar

  • Moroney, W. F. & Moroney, B. W. (2009). Flight simulation. In J. A. WiseV. D. HopkinD. J. GarlandEds., Handbook of aviation human factors (2nd ed., pp. 355–388). London, UK: CRC Press. First citation in articleGoogle Scholar

  • Oberhauser, M. & Dreyer, D. (2017). A virtual reality flight simulator for human factors engineering. Cognition, Technology & Work, 19(2), 263–277. https://doi.org/10.1007/s10111-017-0421-7 First citation in articleCrossrefGoogle Scholar

  • Oberhauser, M., Dreyer, D., Braunstingl, R. & Koglbauer, I. (2017a). Pilots’ flight performance in a virtual reality flight simulator. In M. SchwarzJ. HarfmannEds., Proceedings of the 32nd Conference of the European Association of Aviation Psychology (pp. 322–335). Groningen, The Netherlands: European Association for Aviation Psychology. First citation in articleGoogle Scholar

  • Oberhauser, M., Dreyer, D., Braunstingl, R. & Koglbauer, I. (2017b). Pilots’ interaction with hardware controls in a virtual reality flight simulator. In M. SchwarzJ. Harfmann (Eds.), Proceedings of the 32nd Conference of the European Association of Aviation Psychology, (pp. 565–575). Groningen, The Netherlands: European Association for Aviation Psychology. First citation in articleGoogle Scholar

  • Oberhauser, M., Dreyer, D., Convard, T. & Mamessier, S. (2016). Rapid integration and evaluation of functional HMI components in a virtual reality aircraft cockpit. In F. RebeloM. Soares (Eds.), Advances in ergonomics in design. Proceedings of the AHFE 2016 International Conference on Ergonomics in Design. (pp. 17–24). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-41983-1_2 First citation in articleCrossrefGoogle Scholar

  • Oberhauser, M., Dreyer, D., Mamessier, S., Convard, T., Bandow, D. & Hillebrand, A. (2015). Bridging the gap between desktop research and full flight simulators for human factors research. In D. HarrisEd., Lecture notes in computer science, engineering psychology and cognitive ergonomics (pp. 460–471). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-20373-7_44 First citation in articleGoogle Scholar

  • Perfect, P., White, M. D., Padfield, G. D. & Gubbels, A. W. (2013). Rotorcraft simulation fidelity: New methods for quantification and assessment. The Aeronautical Journal, 117(1188), 1–48. First citation in articleGoogle Scholar

  • Persiani, F., Piancastelli, L. & Liverani, A. (1997). Virtual flight simulator. Proceedings of the 10th ADM International Conference on Design Tools and Methods in Industrial Engineering. Bologna: Associazione Nazionale Disegno e Metodi, 693–701. First citation in articleGoogle Scholar

  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., … Ng, A. Y. (2009). ROS: An open-source Robot Operating System. ICRA Workshop on Open Source Software, 3(3), 5. First citation in articleGoogle Scholar

  • Rehmann, A. J. (1995). A Handbook of flight simulation fidelity requirements for human factors research: DOT/FAA/CT-TN95/46. Springfield, VA: National Technical Information Service. First citation in articleCrossrefGoogle Scholar

  • Rheingold, H. (1991). Virtual reality. New York, NY: Summit Books. First citation in articleGoogle Scholar

  • Robertson, A. & Zelenko, M. (2014). Voices from the past: An oral history of a technology whose time has come again. Retrieved from http://www.theverge.com/a/virtual-reality/oral_history First citation in articleGoogle Scholar

  • Robinson, A., Mania, K. & Perey, P. (2004). Flight simulation: Research challenges and user assessments of fidelity. Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry. Singapore: ACM, 261–268. https://doi.org/10.1145/1044588.1044644 First citation in articleCrossrefGoogle Scholar

  • Rolfe, J. M. & Staples, K. J. (1986). Flight simulation (1st ed.). Cambridge aerospace series. Cambridge, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Sutherland, I. E. (1965). The ultimate display. Proceedings of the International Federation of Information Processing (IFIP). London, UK: Macmillan. First citation in articleGoogle Scholar

  • Viau, A., Feldman, A. G., McFadyen, B. J. & Levin, M. F. (2004). Reaching in reality and virtual reality: A comparison of movement kinematics in healthy subjects and in adults with hemiparesis. Journal of NeuroEngineering and Rehabilitation, 1(1), 11. https://doi.org/10.1186/1743-0003-1-11 First citation in articleCrossrefGoogle Scholar

  • Yavrucuk, I., Kubali, E., Tarimci, O. & Yilmaz, D. (2009). A low cost flight simulator using virtual reality tools. In American Institute of Aeronautics and AstronauticsEds., Proceedings of the AIAA Modeling and Simulation Technologies Conference. Guidance, Navigation, and Control and Co-located Conferences (pp. 1–9). Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-5832 First citation in articleGoogle Scholar