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Abstract: Research in young adults has demonstrated that neurophysiological measures are able to provide insight into learning processes.
However, to date, it remains unclear whether neurophysiological changes during learning in older adults are comparable to those in younger
adults. The current study addressed this issue by exploring age differences in changes over time in a range of neurophysiological outcome
measures collected during visuomotor sequence learning. Specifically, measures of electroencephalography (EEG), skin conductance, heart
rate, heart rate variability, respiration rate, and eye-related measures, in addition to behavioral performance measures, were collected in
younger (Mage = 27.24 years) and older adults (Mage = 58.06 years) during learning. Behavioral responses became more accurate over time in
both age groups during visuomotor sequence learning. Yet, older adults needed more time in each trial to enhance the precision of their
movement. Changes in EEG during learning demonstrated a stronger increase in theta power in older compared to younger adults and a
decrease in gamma power in older adults while increasing slightly in younger adults. No such differences between the two age groups were
found on other neurophysiological outcome measures, suggesting changes in brain activity during learning to be more sensitive to age
differences than changes in peripheral physiology. Additionally, differences in which neurophysiological outcomes were associated with
behavioral performance on the learning task were found between younger and older adults. This indicates that the neurophysiological
underpinnings of learning may differ between younger and older adults. Therefore, the current findings highlight the importance of taking age
into account when aiming to gain insight into behavioral performance through neurophysiology during learning.
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Learning processes have most commonly been examined
using behavioral measures (Luu et al., 2009; Tinga et al.,
2020b; Webb et al., 1966). Non-invasive measurements
of neurophysiology, however, have been demonstrated to
be a valuable alternative measure of learning, providing
insight not only into the outcome of learning but also into
the learning process itself (Tinga et al., 2019). These non-
invasive neurophysiological measures include measures of
brain activity such as electroencephalography (EEG) as well
as measures of peripheral physiology including heart rate,
electrodermal activity, and respiration. Eye tracking mea-
sures are another type of non-invasive neurophysiological
measure. Neurophysiology has been demonstrated to have
high potential as a measure of learning (Krigolson et al.,
2015; Leff et al., 2011; Tinga et al., 2019). Measures of neu-
rophysiology respond in a predictable manner to cognitive
demand or mental effort (Antonenko et al., 2010; Borghini
et al., 2014; Charles & Nixon, 2019; Hogervorst et al., 2014;
Tinga et al., 2020b). As mental effort increases, parasympa-

thetic inhibition decreases, and sympathetic activation
increases (Berntson et al., 1991), reflected in measures of
peripheral physiology and eye-related measures. These
changes are paralleled by changes in the central nervous
system such as in oscillations in the EEG signal with alpha
and theta oscillations generally respectively increasing and
decreasing with decreasing demands (Antonenko et al.,
2010; Brouwer et al., 2012). Because learning can be con-
sidered as a change in the cognitive demands a task
induces when the task becomes less difficult and processing
of the task becomes less effortful (e.g. Fairclough et al.,
2005; Schneider & Chein, 2003; Tinga et al., 2020b), neu-
rophysiology has the potential to provide insight into
learning.

A recent meta-analysis of 113 experiments demonstrated
that learning-related changes in neurophysiology and
behavior are differentially affected by individual differences
and task-related aspects (Tinga et al., 2019). Participant
age showed to be an important individual difference that
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influenced how neurophysiology changed over time during
learning. Specifically, changes in neurophysiology
decreased as participants’ age increased. Even though these
effects of age were found for neurophysiology, no such
effects were found for changes in behavioral outcomes dur-
ing learning. Most studies examining neurophysiological
changes during learning have included the common rela-
tively young adult participant population, with the mean
age of participants in the 113 included experiments in the
meta-analysis of Tinga et al. (2019) being 28.58 years.
How these findings translate to an older population how-
ever remains unclear. Indeed, it has been questioned to
what extent learning-related changes in neurophysiology
occur in older adults, although this issue has received scant
attention in the literature (Alain & Snyder, 2008).

Furthermore, most of the experiments, at least those
included in the meta-analysis by Tinga et al. (2019), focus
(solely) on changes in brain activity during learning. We
have emphasized the importance of considering a multi-
tude of neurophysiological measures (Tinga et al., 2019,
2020a, 2020b). As most studies focused on brain activity
outcome measures, it is unclear whether the effect of age
reported in our meta-analysis (Tinga et al., 2019) translates
to other neurophysiological outcome measures.

It is important to gain insight into how neurophysiological
outcome measures, both brain activity outcome measures
and peripheral ones, change during learning in older com-
pared to younger populations when one wants to assess
learning through these measures in people of varying ages
in practice. In educational settings, the outcome of learning
is normally only assessed at the end of learning. Neuro-
physiology provides the opportunity to measure learning
over time during learning itself. It can support predicting
the outcome of learning and deeper insights into learning
can be obtained due to the possibility to record multi-chan-
nel data at a high sample rate (Tinga et al., 2020b). When
age differences in learning-related neurophysiological
changes are well understood they can be taken into account
to ensure valid assessment.

However, only a few experimental studies compared
learning-related changes in neurophysiology between
younger and older adults. Most of the existing studies
focused on changes in event-related potentials (ERPs)
obtained through EEG measurements. Alain and Snyder
(2008) examined changes in ERP amplitudes during learn-
ing to distinguish different auditory vowels in both younger
(Mage = 24.0 years) and older adults (Mage = 67.8 years).
While both age groups showed comparable learning gains
incorrect responses and reaction times, changes in ERPs
during learning did differ between the age groups. Some
changes in ERPs were present in both younger and older
adults, while other effects were only present in younger
or older adults. For one effect of learning on ERPs that

was present in both age groups in the temporal lobe, the
authors reported the learning-related changes to be larger
in younger adults. Likewise, Eppinger and colleagues
(2008) and Eppinger and Kray (2011) examined changes
in ERPs during learning from feedback with differing valid-
ity or with either monetary gains or losses respectively in
younger (Mage = 20.8 years; 22.1 years) and older adults
(Mage = 68.5 years; 69.7 years). Performance accuracy
increased over time during learning from feedback with
high validity (� 80%) in a comparable way in younger
and older adults. Learning rates with both monetary gains
and losses were higher in younger than in older adults.
Regarding age differences in changes in neurophysiology
during learning, only younger adults demonstrated a
change in ERPs at frontocentral sites in both studies. In
two experiments (Pietschmann et al., 2008, 2011), younger
adults (Mage = 22.0 years; 25.8 years) and older adults (Mage

= 65.9 years; 65.8 years) learned stimulus-response associ-
ations. Between the two age groups, only one significant
difference in behavioral learning was demonstrated in only
one of the two experiments (Pietschmann et al., 2011). This
demonstrated that older adults needed more trials than
younger adults to learn the stimulus-response associations.
Regarding age differences in changes in neurophysiology
during learning, younger adults demonstrated changes in
ERP amplitudes over time at frontocentral sites, while older
participants did not (Pietschmann et al., 2011) or did only
for one ERP amplitude measure (Pietschmann et al., 2008).

All in all, these studies demonstrate that changes in ERPs
during learning are generally larger in younger compared to
older adults. Such findings are important in providing
insight into age differences in learning-related neurophysi-
ological changes. Yet, specific response measures such as
ERPs can only be computed by presenting many similar
stimuli that are able to elicit an ERP that can be reliably
time-locked to those stimuli. These stimuli can be pre-
sented on a primary task, or via a repeatedly presented
probe irrelevant to the task (Gevins & Smith, 2003). These
specific response measures are therefore difficult to apply
in practice, outside the lab, and may be challenging to inte-
grate into learning technologies.

A small number of studies examined non-invasive neuro-
physiological outcomes reflecting more general cognitive
changes during learning that can be measured continuously
without time-locking neurophysiology to many repeating
stimuli. One such study by Neider and colleagues (2010)
examined changes in eye movements over time during
visual search learning in younger (Mage = 20 years) and
older adults (Mage = 65 years). However, they did not find
any difference between these two age groups. A study
examining general changes in power bands in the EEG sig-
nal by Lopez-Loeza and colleagues (2016) tested younger
(Mage = 21.50) and older adults (Mage = 52.75 years) on a

�2023 The Author(s). Distributed as a Hogrefe OpenMind article Journal of Psychophysiology (2023), 37(3), 154–167
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)

A. M. Tinga et al., Age Differences in Learning-Related Neurophysiological Changes 155

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/0

26
9-

88
03

/a
00

03
17

 -
 W

ed
ne

sd
ay

, M
ay

 0
1,

 2
02

4 
8:

29
:1

8 
A

M
 -

 I
P 

A
dd

re
ss

:1
8.

22
0.

13
6.

16
5 



visuospatial learning task. The older adults showed a pat-
tern of generally lower theta power and higher gamma
power in frontal and temporal brain areas. However,
changes over time, which would be reflective of learning
processes specifically, were not examined in this study.

Although previous work points to age differences in
learning-related changes in neurophysiology, there is only
a limited number of studies on this topic, and studies that
do exist mostly focus on very specific outcome measures
(such as ERPs in EEG). Therefore, it remains unclear
whether learning improvements in behavioral performance
in older adults are paralleled by changes in a range of neu-
rophysiological outcome measures being reflective of more
general cognitive changes and whether this is comparable
to changes observed in younger adults.

The current study aimed to explore how a range of neu-
rophysiological outcome measures change during learning
in older compared to younger adults. Behavioral measures
and multiple non-invasive neurophysiological measures,
including EEG, skin conductance level, heart rate, heart
rate variability, respiration rate, and eye tracking metrics
were collected. These measures were recorded in both
younger and older adults during implicit visuomotor
sequence learning. The acquisition of motor sequences is
essential throughout our lives and for healthy aging, as
we learn new motor skills as well as when we need to mod-
ify previously learned skills (Fitzroy et al., 2021; King et al.,
2013; Moisello et al., 2009). The current study selected the
Serial Reaction Time Task (SRT; Nissen & Bullemer, 1987).
This is a standard paradigm for assessing visuomotor
sequence learning and it is used often in research studying
differences between learning in younger and older adults
(Fitzroy et al., 2021). In this task, participants respond to
stimuli successively appearing at different locations by
making a spatially corresponding response. Unbeknownst
to the participants, the required responses follow a contin-
uous complex sequence.

Generally, both younger and older adults show marked
improvements in behavioral performance over time during
visuomotor sequence learning, both due to implicitly learn-
ing the sequence of responses and due to learning the prin-
ciples of the task. On average, however, younger adults
learn better than older adults due to age-related decreases
in cognitive functioning (King et al., 2013). Therefore, in the
current study, we expected behavioral performance to
increase over time during task learning, with the learning
performance of younger adults exceeding that of older
adults. Yet, as it is currently unclear how neurophysiology
changes during learning in older compared to younger
adults, learning-related changes in neurophysiology in both
age groups were examined in an exploratory fashion. This
exploration aims to support the next steps toward the
assessment of learning through neurophysiology in practice.

Methods

Participants

Seventeen young adults (age range = 22–30 years, Mage =
27.24 ± 2.17 years; 13 females) and 17 older adults (age
range = 55–62 years, Mage = 58.06 ± 2.08 years; 11 females)
participated in the current study. All participants were
employees at Tilburg University and were included if they
reported no current cardiovascular disease, neurological
disorder, and lung disease (following Tinga et al., 2020a,
2021). None of the participants reported colorblindness.

The number of participants was estimated based on pre-
vious studies, as well as on a power analysis. The number of
participants in the experimental studies of Alain and Snyder
(2008), Eppinger et al. (2008), Eppinger and Kray (2011),
Lopez-Loeza et al. (2016), and Pietschmann et al. (2008,
2011) discussed above ranged between 12 and 18 partici-
pants per group. Using the lowest effect size (partial eta
squared, ηp

2) for reported effects regarding interactions
between time and age on neurophysiological outcome mea-
sures in these experimental studies (namely a ηp

2 of .06)
and a priori power analyses for repeated measures,
within-between interaction F tests in G*Power 3 (Faul
et al., 2007), with an error probability of 0.05 and a power
of 0.95, indicated that a total sample size of 10 for 2 differ-
ent groups would ensure sufficient power.

Apparatus and Measures

The task was presented on a desktop monitor (BenQ Zowie
XL2540, 1,920 � 1,080 pixels, 240 Hz refresh rate) run-
ning Unity 3D (version 2017.4.1). Participants used a joy-
stick (Ultimarc UltraStik 360, mounted on a table 16 cm
in front of the participants’ body midline) to interact with
the task. The coordinates of the cursor’s position controlled
by the joystick were recorded at 90 Hz.

Three-lead electrocardiography (ECG), respiration, and
electrodermal activity (EDA) were measured continuously
throughout the experiment at 2,000 Hz using BioNomadix
wireless systems (BN-RSPEC and BN-PPGED, BIOPAC
Systems, Inc.). The ECG signal was bandlimited online
from 0.05 Hz to 150 Hz and the respiration and EDA sig-
nals were both bandlimited online from DC to 10Hz. These
signals were collected using AcqKnowledge 5.0 (BIOPAC
Systems, Inc.) software running on a computer exclusively
dedicated to collecting the ECG, respiration, and EDA data.

Eye tracking data were collected continuously throughout
the experiment at 60Hz using a desktop eye tracker (REDn
scientific, SMI) and the iView REDn Scientific 4.4.26 (SMI)
and Experiment Center 3.7.68 (SMI) software packages.

Nine-channel (Fz, F3, F4, Cz, C3, C4, Pz, P3, and P4)
EEG signals were measured continuously throughout the

Journal of Psychophysiology (2023), 37(3), 154–167 �2023 The Author(s). Distributed as a Hogrefe OpenMind article
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)

156 A. M. Tinga et al., Age Differences in Learning-Related Neurophysiological Changes

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/0

26
9-

88
03

/a
00

03
17

 -
 W

ed
ne

sd
ay

, M
ay

 0
1,

 2
02

4 
8:

29
:1

8 
A

M
 -

 I
P 

A
dd

re
ss

:1
8.

22
0.

13
6.

16
5 



experiment at 256 Hz using a wireless B-Alert X10 system
(Advanced Brain Monitoring). The EEG signals were col-
lected using AcqKnowledge 5.0 software running on a com-
puter exclusively dedicated to collecting the EEG data.

Learning Task and Stimuli

Following Tinga and colleagues (2020a, 2021), the learning
task (see Figure 1) was a version of the SRT in which
responses to targets need to be made using arm move-
ments. The stimuli to which participants responded were
eight white target circles presented on a dark gray back-
ground. The target circles had a diameter of 108 pixels
and were evenly spaced apart at 360 pixels from the center
of the screen. Additionally, a white circle with a diameter of
108 pixels was presented in the center of the screen. Partic-
ipants moved the cursor (black small circle with a diameter
of 33 pixels) with the joystick from the center of the screen
to one of the targets and back to the center. A target was
selected by one of the target circles turning light gray. Tar-
get selection was always in synchrony with a 160 ms tone
(presented via headphones) at an interval of 1 s. If partici-
pants hit the selected target correctly with the cursor, the
target turned green. When a participant made an incorrect
choice by either hitting a non-selected target or hitting the
selected target too late, the target that was hit turned red.

The task consisted of 8 learning blocks, each with 128 tri-
als of 1 s. Targets for movements were selected in a repeat-
ing sequence of 16 elements in which each target was
selected twice. Two such sequences were used, with each
participant being presented with one of the two sequences,
counterbalanced between participants (Figure 1, left). No
random sequence was included for the purpose of the
current study, following Tinga and colleagues (2021). More-

over, previous research has demonstrated that neuro-
physiology is reflective of more general learning processes
and not specifically of sequence learning (Tinga et al.,
2020a).

Procedure

After obtaining written and verbal informed consent, partic-
ipants filled out a questionnaire on demographics (i.e., age
and gender). The EEG, ECG, respiration, and EDA sensors
were placed on the participant, the eye tracker was cali-
brated, and data collection of the neurophysiological mea-
sures was started. First, a baseline of the neurophysiology
of three minutes was collected in which participants were
presented with a black fixation cross on a dark gray back-
ground. Participants were instructed to sit calmly and still
while keeping their eyes open while fixating on the fixation
cross.

The learning task (Figure 1, right) was started after 16
practice trials. Participants were instructed to move the cur-
sor using the joystick as fast and as accurately as possible
and to reverse sharply within the target circle back to the
middle. A second and third baseline of the neurophysiology
of three minutes was collected after the fourth and eighth
blocks of the learning task. A schematic overview of the
current study’s procedure is depicted in Figure 2.

Following Moisello and colleagues (2009) and Tinga and
colleagues (2020a, 2021), after completing the learning task
participants were asked to indicate the (most common)
order in which the circles were selected as a target for each
of the two parts of the task separately to test their declara-
tive knowledge of the presented sequences. To this aim,
participants were shown the schematic depiction in Figure 1
on the left and were asked to write this order down by

Figure 1. Schematic depiction of the target array on the left and the learning task on the right. Regarding the target array depiction, numbers are
for illustrative purposes only. The numbers correspond to one of the following two presented orders (between subjects): 8 – 2 – 7 – 5 – 3 – 1 – 4 –

6 – 1 – 5 – 7 – 2 – 4 – 8 – 6 – 3 or 6 – 8 – 7 – 4 – 3 – 2 – 5 – 1 – 7 – 3 – 4 – 6 – 8 – 1 – 5 – 2. Regarding the learning task depiction, the joystick is
mounted on a table and the task is presented on a monitor (cursor in black, the eight targets spaced at equal distances from the middle with one
selected target being darker).
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referring to the numbers in the figure. Participants were
instructed to guess if they did not recall the order. Experi-
mental sessions, including setting up and removing the sen-
sors, took approximately 70 min per participant.

Data Processing and Analyses

Processing of Behavioral Outcome Measures
Multiple behavioral outcome measures were computed in
order to gain better insight into what aspects of the learning
process showed differences between the two age groups.
We followed Moisello and colleagues (2009) in computing
a range of behavioral outcomes per trial: (1) Whether the
response on a trial was correct, that is, when a movement
was initiated from the middle and when the selected target
was hit within 1 s; (2) time from the start of the trial until
the start of movement (onset time, OT); (3) time from the
start of movement until the end of the movement (move-
ment time, MT); (4) sum of the absolute OT and MT (re-
sponse time, RT); (5) maximum speed of displacement
between OT and end of the movement (peak velocity,
PV); (6) linear distance from the endpoint of the movement
and the center of the target (spatial error, SE); (7) the area
in which the cursor moved divided by the squared move-
ment length (normalized movement area, NMA).

Processing of Neurophysiological Outcome Measures
Electrocardiography
A finite impulse response (FIR) high-pass filter at 1 Hz and
an FIR low-pass filter at 35 Hz were applied to the recorded
ECG signal. QRS complexes were automatically identified
in the ECG signal using AcqKnowledge 5.0. The identified
complexes were manually checked and adjusted when
needed. Based on the marked QRS complexes heart rate
and the root mean square of successive differences
(RMSSD) as a measure of heart rate variability wase
computed.

Respiration
An FIR low-pass filter at 1 Hz was applied to the recorded
respiration signal. Breaths per minute were determined
using AcqKnowledge 5.0.

Electrodermal Activity
The recorded EDA signal was resampled to 50 Hz. Median
smoothing with 1 s windows and an FIR low-pass filter at

1 Hz were applied on the resampled signal. The skin con-
ductance level was computed as the average EDA.

Eye Tracking
The program BeGaze 3.7.59 (SMI) was used to process the
collected eye-tracking signal. For each sample, the pupil
diameter in millimeters and the category of the sample
(i.e., blink, fixation, or saccade) were determined.

Electroencephalography
The FieldTrip EEG processing toolbox (version 2019-10-
08; Oostenveld et al., 2011) was used in the software pro-
gram MATLAB (version R2019a) to process the collected
EEG signal. Data were low-passed filtered at 60 Hz after
which automatic EOG and muscle artifact rejection was
performed. Cut-offs for EOG and muscle artifact rejection
were set at z = 4 and z = 8 and performed inside frequency
bands of 1–15Hz and 100–125Hz, respectively. The relative
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (15–25
Hz), and gamma frequency (30–60 Hz) for each channel
were computed with the multitaper method using Hanning
tapers. The range of frequency bands was based on those
used in earlier research (Arnal & Kleinschmidt, 2017;
Tesche & Karhu, 2000; Wrobel, 2000).

Statistical Analyses
A declarative knowledge score was determined for each
participant by computing the maximum overlap (in percent-
ages) between the order that was indicated at the end of the
experiment and the real sequence (of 16 targets) that was
presented. A maximum permitted declarative knowledge
score of 40% (i.e., having a maximum overlap between
the real and indicated order of 7 or more) was set following
earlier work (Curran & Keele, 1993; Moisello et al., 2009;
Tinga et al., 2020a, 2021; Willingham et al., 1989). A max-
imum score was set to ensure that the included data was all
from participants that learned the SRT implicitly.

Behavioral and neurophysiological outcomes were aver-
aged for each block. Averages for OT, MT, RT, PV, SE,
and NMA were determined for correct trials only. The aver-
age heart rate, heart rate variability, breaths per minute,
skin conductance level, pupil diameter, number and dura-
tion of blinks, number and duration of saccades, number
and durations of fixations, and relative power in the EEG
delta, theta, alpha, beta, and gamma frequency bands for
the whole scalp, frontal, central, and parietal electrodes
were computed for the baselines and each block.

Figure 2. Schematic of the study’s procedure. Dark boxes depict the learning task, in which “B1”–“B8” indicate blocks with each 128 trials.
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In order to examine age differences in learning-related
neurophysiological changes, the current study’s analyses
included two factors: age (younger vs.older adults) and
block (the task’s eight learning blocks). Both the main
effects and the interaction between the factors were tested.
These tests allowed for (1) examining general age differ-
ences that are reflected in overall differences during the
execution of the task both for behavioral and neurophysio-
logical outcome measures and (2) examining learning-
related age differences that are reflected in changes over
time during the execution of the task both for behavioral
and neurophysiological outcome measures. Following the
recommendation of Figner and colleagues (2022), the inter-
pretation of the pattern of statistically significant interac-
tions was based on exploring means and figures showing
the pattern, rather than running additional statistical tests.
Finally, in order to explore whether neurophysiology can
be utilized to provide insight into behavioral performance
during learning in both age groups, the relationship between
neurophysiological outcomes and behavioral outcomes over
all blocks was tested for younger and older adults.

All statistical analyses were performed with linear mixed-
effects models analyses using lme in R (R Core Team, 2017)
with the subject as a random factor.

The analyses included a relatively high number of com-
parisons as the current study included a range of neuro-
physiological outcomes. One may hold the opinion that
this means that p-values must be adjusted for multiple com-
parisons. Yet, as 31 neurophysiological outcome measures
are included, correcting for multiple comparisons means
that p-values for these outcome measures need to be smal-
ler than .0016 (.0500/31) for the effect to be considered
statistically significant. As the effects of learning on neuro-
physiology had an average p-value of .0472 in the included
studies in the meta-analysis of Tinga and colleagues (2019),
adjusting the p-values in the current study is expected to
lead to a high type II error rate and is therefore undesirable.
This is in line with the recommendation of Rothman (1990)
to not adjust for multiple comparisons in order to make
fewer type II errors and therefore to prevent not detecting
possibly important findings. Similarly, Althouse (2016)
pointed out that adjusting for multiple comparisons reduces
the likelihood of associations being found in larger studies
compared to small studies. Perneger (1998) even deemed
such adjustments “deleterious to sound statistical infer-
ence.” Althouse (2016) recommended reporting methods
and results in detail and letting readers use their own judg-
ment about the relative weight of the findings. In line with
these recommendations, and in order to avoid a Type II
error, we, therefore, applied no adjustment for multiple
comparisons. However, we raise this issue to make the
reader aware of this decision when interpreting significant
results.

Results

With declarative knowledge scores all below 40%, none of
the participants needed to be excluded from further analy-
ses based on their declarative knowledge score. The aver-
age declarative score was 20.94% (SD = 7.64%, range =
12.50–37.50%) and 16.56% (SD = 5.39%, range = 12.50–
31.25%) for the younger and older adults, respectively.
For artifact removal in the EEG data, the maximum per-
centage of samples that were discarded in a block/baseline
was 15.21%, with an average of 2.64% of samples discarded
after artifact removal. ECG data of one participant were
excluded due to one of the sensors detaching during the
experiment and the EDA data of one participant was
excluded due to sensor placement not being possible on
the fingers of the non-dominant hand. Eye tracking data
of two participants were not collected due to technical
issues. All remaining eye-tracking data were of high quality,
with all baselines and blocks including at least 75% non-
missing samples, with an average of 98.59% of non-missing
samples.

In sum, data of all 34 participants (17 young and 17 older
adults) were included for analyses on behavioral, EEG, and
respiration data. After the exclusion of participants as men-
tioned in the preceding paragraph, data of 33 participants
(16 young and 17 older adults) were included for analyses
on ECG data, data of 33 participants (16 young and 17 older
adults) were included for analyses on EDA data, and data of
32 participants (15 young and 17 older adults) were included
for analyses on eye tracking data.

Behavioral Performance

A general difference was found in overall behavioral perfor-
mance between younger and older adults. Younger adults
had on average 27.77% more correct responses than older
adults. Additionally, in younger adults MT was 24.84 ms
longer, SE was 194.22 pixels smaller, and NMA was 2.08%
larger than in older adults. These results demonstrate that
younger adults hadmore correct and precise responses than
older adults while making slightly longer movements cover-
ing a larger area. These results are in line with previous
research generally demonstrating slower motor responses
and slower response times and less accurate responses in
older adults (Verhaeghen, 2016; Woods et al., 2015).

Regarding performance changes over blocks in all partic-
ipants, correct responses and MT indeed increased by
29.04% and 18.92 ms respectively. PV and SE decreased
by 282.16 pixels per second and 360.92 pixels, respectively.
There was also an effect on NMA, which decreased by
1.27%. Age interacted with block, demonstrating that the
increase in correct responses over blocks was larger in older
adults than younger adults (an increase of 33.69% in older

�2023 The Author(s). Distributed as a Hogrefe OpenMind article Journal of Psychophysiology (2023), 37(3), 154–167
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adults compared to 24.40% in younger adults), with older
adults starting and ending with a lower number of correct
responses than younger adults. Additionally, while OT
and RT increased over blocks in older adults, they
decreased in younger adults. SE decreased also more
strongly for the older adults, who started with a higher SE
than younger adults in the first block and ended with a
higher SE than younger adults in the last block. Details of
effects (F, p, ηp

2) on behavioral outcome measures are pre-
sented in Table 1.

These findings demonstrate that behavioral responses
became more correct over blocks, by making movements
slower (but not by slowing the total response time) and
more precise. Most importantly, these changes over blocks
interacted with age, demonstrating that although older
adults performed less well than younger adults in general,
they did show larger increases in performing correctly
and precisely during learning. Yet, older adults became
slower over blocks in starting their movements, increasing
their total response time, while younger adults became fas-
ter. These findings are in line with previous research indi-
cating that older adults prioritize accuracy over speed
(Verhaeghen, 2016). While changes in behavioral outcome
measures during learning differed between younger and
older adults, both demonstrated marked improvements in
the number of correct responses over time, indicating suffi-
cient learning in both age groups.

Neurophysiology

General differences between the age groups were found for
pupil diameter and central theta power, demonstrating a
smaller pupil diameter in older (M = 3.37 mm, SD = 0.41
mm) than in younger adults (M = 3.82 mm, SD = 0.58
mm) and a lower theta power at central sites in older (M =
10.32%, SD = 4.50%) than in younger adults (M = 14.28%,
SD = 5.50%). A smaller pupil diameter has been linked
to a generally lower effort investment during learning

(Takeuchi et al., 2011). These effects could, however, also
be linked to differences in physiology due to age, irrespec-
tive of cognitive demands during learning, as it has been
demonstrated that pupil size decreases with increasing age
(Winn et al., 1994). Moreover, general differences between
younger (20–30 years) and older (65–75 years) adults in
theta power have been reported (Jabès et al., 2021). General
age differences in theta power during visuospatial learning
have been reported by Lopez-Loeza and colleagues
(2016), who also demonstrated lower theta power in older
adults compared to younger adults. In order to gain better
insight into whether these general differences are specific
to the demands of the learning task, we explored age differ-
ences in pupil diameter and central theta power during the
three baselines as post-hoc tests. The two age groups dif-
fered significantly in baseline pupil diameter, F(1, 30) =
6.02, p = .020, ηp

2 = .17, but not in central theta power, F
(1, 32) = 3.82, p = .059, ηp

2 = .11, demonstrating that the gen-
eral difference in pupil size during the execution of the
learning task in the current study indeed is associated with
differences between both age groups irrespective of task
demands, while not providing such evidence for central
theta power.

Many neurophysiological outcome measures changed
over blocks during task learning in both age groups. Heart
rate and respiration rate decreased by 1.64 beats per min-
ute and 0.36 breaths per minute respectively. Pupil diame-
ter decreased by 0.16 mm, the number of saccades
increased by 4.56 saccades per minute and fixation dura-
tion increased by 9.09 ms. Total, frontal, central, and pari-
etal EEG theta power increased by 0.99%, 1.06%, 1.00%,
and 0.77%, respectively. Total, frontal, central, and parietal
EEG alpha power increased by 1.07%, 1.17%, 1.12%, and
0.68%, respectively. Beta power decreased at all sites by
0.43%, at frontal sites with 0.49%, and at central sites by
0.52%. Total, frontal, central, and parietal EEG gamma
power decreased by 0.93%, 0.78%, 1.46%, and 0.37%,
respectively. To a large extent, these neurophysiological

Table 1. Behavioral effects (F, p, ηp
2) of age and block and the interaction between age and block

Age Block Age � Block

Outcome measurement F ηp
2 F ηp

2 F ηp
2

Number of correct responses (Correct) 16.91*** .35 217.02*** .48 5.63* .02

Onset time (OT) 2.76 .08 0.19 .00 29.09*** .11

Movement time (MT) 6.93* .18 8.73** .04 0.48 .00

Response time (RT) 0.34 .01 0.01 .00 29.99*** .11

Peak velocity (PV) 2.80 .08 89.67*** .28 1.40 .00

Spatial error (SE) 9.66** .23 162.46*** .41 17.48*** .07

Normalized movement area (NMA) 6.00* .16 7.11** .03 2.80 .01

Note. ***p < .001; **p < .01; *p < .05.
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changes seem to be reflective of the task becoming easier
over time, associated with a decrease in cognitive effort
exertion over time.

In addition, neurophysiological changes during learning
differed between the two age groups. Total EEG theta
power increased more strongly in older than in younger
adults (an increase of 1.56% vs. 0.42%, respectively). This
difference was also found for EEG theta power at frontal
(an increase of 1.77% vs. 0.35%, respectively), central (an
increase of 1.59% vs. 0.41%, respectively), and parietal sites
(an increase of 1.08% vs. 0.37%, respectively) specifically.
The changes in total EEG theta power are depicted in
Figure 3 on the left. The pattern of changes in the total
EEG theta power is comparable to the pattern of changes
at frontal, central, and parietal sites. From these patterns,
it seems that the stronger increase in older adults mainly
occurs in the first four blocks. Total gamma power
decreased in older adults (by 2.15%), but increased in
younger adults (by 0.30%). This effect was also found for
EEG gamma power at frontal, central, and parietal sites
specifically, demonstrating a decrease in older adults of
2.09%, 2.71%, and 1.38%, respectively. The changes in total
EEG gamma power are depicted in Figure 3 on the right.
The pattern of changes in the total EEG gamma power is
comparable to the pattern of changes at frontal, central,
and parietal sites. From these patterns, it appears that the
decrease in older participants occurs mainly in the
first seven blocks and that the increase in younger partici-
pants is rather small. Details of effects (F, p, ηp

2) on
neurophysiological outcome measures are presented in
Table 2.

These findings demonstrate that changes in brain activity
during learning were different in younger compared to
older adults. However, no age differences were found for
other neurophysiological outcome measures, suggesting
that changes during learning in brain activity are more sen-
sitive to age than changes in peripheral physiology.

Relationship Between Neurophysiology
and Behavioral Performance in Younger
and Older Adults

Heart rate, pupil diameter, number of blinks, fixation dura-
tion, parietal delta power, parietal theta power, and alpha
power at all sites were related to at least one behavioral out-
come measurement in both younger and older adults. Only
in younger adults were heart rate variability, number of sac-
cades, number of fixations, and parietal beta power related
to at least one behavioral outcome measurement. Skin con-
ductance level, respiration, delta and theta power at total,
frontal and central sites, central beta power, and gamma
power at all sites were related to behavioral performance
only in older adults. The outcomes (ηp

2) of testing the rela-
tionship between each behavioral and neurophysiological
measurement are reported in Table 3 for the younger adults
and in Table 4 for the older adults.

These results suggest that several measures of neuro-
physiology provide insight into behavioral performance irre-
spective of age, while other neurophysiological outcomes
could provide insight only in younger or older adults.
Important to note here, however, is that for all neurophys-
iological outcome measures that gave insight into behav-
ioral performance for both age groups, none of these
outcome measures provided insight into the same behav-
ioral performance metrics in the two groups. Therefore, it
seems to be important to take age into account when aim-
ing to gain insight into behavioral performance through
neurophysiology during learning.

Discussion

Non-invasive measurements of neurophysiology can pro-
vide valuable insights into learning. Studies on this topic,
however, have predominantly examined effects in young

Figure 3. Overview of total EEG theta power (left) and total EEG gamma power (right) for younger (young) and older (old) adults. B1–B3 represent
the three baselines and S1–S8 represent the eight blocks of the SRT. Error bars represent the standard error of the mean.
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adults only. Few prior studies have compared learning-
related changes in neurophysiology between younger and
older adults and those few studies mostly focused on very
specific neurophysiological outcome measures. Therefore,
it is unclear whether learning in older adults is paralleled
by a change in a range of neurophysiological outcome mea-
sures being reflective of more general cognitive changes
comparable to those observed in younger adults. The cur-
rent study addressed this issue by presenting both younger
(Mage = 27.24 years) and older adults (Mage = 58.06 years)
with an implicit visuomotor sequence learning task. During
task learning, behavioral measures of learning and multiple
non-invasive neurophysiological measures, including EEG,

skin conductance level, heart rate, heart rate variability, res-
piration rate, and eye tracking metrics were collected.

General Age Differences

On the whole, results demonstrated that age differences
existed in overall behavioral performance and neurophysi-
ology. Responses were on average more correct and more
precise, while movements were slightly longer and covered
a larger area, in younger compared to older adults. General
age differences also existed in neurophysiology, demon-
strating a smaller pupil diameter and lower EEG theta
power at central sites in older compared to younger adults.

Table 2. Neurophysiological effects (F, p, ηp
2) of age and block and the interaction between age and block

Age Block Age � Block

Outcome measurement F ηp
2 F ηp

2 F ηp
2

Measures of peripheral physiology

Heart rate 0.00 .00 14.89*** .06 2.59 .01

Heart rate variability 3.28 .10 1.94 .01 0.75 .00

Skin conductance level 0.70 .02 0.53 .00 0.47 .00

Respiration 0.02 .00 5.06* .02 0.75 .00

Eye tracking measures

Pupil diameter 6.39* .18 78.71*** .26 2.74 .01

Blinks 0.06 .00 0.32 .00 0.85 .00

Blink duration 1.95 .08 2.29 .01 0.16 .00

Saccades 0.93 .03 6.05* .03 0.85 .00

Saccade duration 1.03 .03 0.17 .00 0.02 .00

Fixations 0.05 .00 3.25 .01 1.87 .01

Fixation duration 0.60 .02 18.50*** .08 0.02 .00

Measures of brain activity

Delta total 0.69 .02 0.08 .00 2.00 .01

Delta frontal 0.70 .02 0.02 .00 1.23 .00

Delta central 0.95 .03 0.42 .00 2.70 .01

Delta parietal 0.67 .02 0.01 .00 1.85 .00

Theta total 4.13 .11 28.61*** .11 13.30*** .05

Theta frontal 3.30 .09 30.24*** .11 16.67*** .07

Theta central 5.45* .15 17.76*** .07 11.97*** .04

Theta parietal 3.63 .10 34.63*** .13 10.04** .04

Alpha total 0.14 .00 52.37*** .18 0.00 .00

Alpha frontal 0.10 .00 53.14*** .18 0.32 .00

Alpha central 0.23 .01 49.43*** .17 0.60 .00

Alpha parietal 0.03 .00 29.02*** .11 0.15 .00

Beta total 1.32 .04 7.78** .03 0.78 .00

Beta frontal 1.30 .04 7.93** .03 0.39 .00

Beta central 1.24 .04 7.59** .03 2.32 .01

Beta parietal 1.30 .04 3.74 .02 0.27 .00

Gamma total 0.66 .02 8.80** .04 10.12** .04

Gamma frontal 0.53 .02 6.34* .03 8.80** .04

Gamma central 1.20 .04 11.69*** .05 9.80** .04

Gamma parietal 0.52 .02 5.42* .02 9.48** .04

Note. ***p < .001; **p < .01; *p < .05.
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With pupil diameter also being smaller in older adults dur-
ing the task baselines, the age difference in pupil diameter
is probably due to inherent differences in physiology
between both age groups and not due to differences in
the demands of the learning task. Central power did not dif-
fer significantly between the two age groups at baseline,
which might reflect that the task induces different levels
of mental effort in younger and older adults. This finding
is in line with Lopez-Loeza and colleagues (2016), who also
found generally lower theta power in older adults compared
to younger adults during visuospatial learning, interpreting
this as task efficiency and information retrieval skills being
higher in younger than older adults.

Age Differences in Learning-Related
Changes

Effects related to the process of learning specifically would
be revealed by changes over time in the outcomes. Behav-
ioral performance improved over time and these improve-
ments interacted with age. Older adults demonstrated
larger enhancements incorrect responses and precision of
responses during learning. While responses of younger
adults became faster over time, responses of older adults
became slower. These findings indicate behavioral learning
differed between younger and older adults. Yet, both age
groups demonstrated marked improvements in the number

Table 3. Relationship (ηp
2) between neurophysiological and behavioral outcome measures in younger adults

Outcome measurement ηp
2 correct ηp

2 OT ηp
2 MT ηp

2 RT ηp
2 PV ηp

2 SE ηp
2 NMA

Measures of peripheral physiology

Heart rate .00 .01 .09* .03 .09 .00 .07

Heart rate variability .09 .08* .00 .06* .05 .11 .05

Skin conductance level .04 .12 .00 .07 .01 .03 .03

Respiration .02 .00 .00 .00 .01 .01 .03

Eye tracking measures

Pupil diameter .38* .13 .07 .07 .56* .09 .14

Blinks .01 .07* .01 .04 .02 .01 .09

Blink duration .00 .02 .02 .00 .00 .00 .00

Saccades .08** .01 .00 .02 .01 .06* .01

Saccade duration .03 .01 .02 .03 .01 .07 .04

Fixations .08* .00 .01 .00 .04 .08* .05

Fixation duration .08* .07 .04 .10** .03 .13* .21*

Measures of brain activity

Delta total .04 .03 .00 .01 .13 .16 .18

Delta frontal .04 .01 .00 .00 .10 .16 .16

Delta central .02 .04 .00 .01 .14 .14 .19

Delta parietal .03 .04 .00 .02 .13 .13 .22*

Theta total .07 .02 .00 .01 .01 .11 .00

Theta frontal .07 .03 .00 .02 .01 .10 .00

Theta central .02 .00 .00 .00 .00 .06 .00

Theta parietal .16* .03 .00 .02 .02 .20* .00

Alpha total .18* .13* .01 .09 .16* .23* .06

Alpha frontal .17* .11 .02 .07 .17* .23* .05

Alpha central .16** .14* .00 .10* .15* .22** .04

Alpha parietal .11* .08 .01 .05 .10 .15* .05

Beta total .10 .07 .06 .03 .01 .00 .10

Beta frontal .06 .11 .03 .07 .01 .00 .08

Beta central .07 .03 .05 .01 .02 .00 .14

Beta parietal .07 .04 .09* .00 .00 .01 .10

Gamma total .00 .02 .00 .00 .03 .02 .07

Gamma frontal .00 .01 .00 .00 .01 .02 .06

Gamma central .00 .02 .01 .00 .03 .01 .08

Gamma parietal .00 .03 .00 .01 .04 .02 .10

Note. ***p < .001; **p < .01; *p < .05.
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of correct responses over time, suggesting sufficient learn-
ing in both younger and older adults.

Many neurophysiological outcome measures changed
during learning: Heart rate, respiration rate, and pupil
diameter decreased, the number of saccades and fixation
duration increased, EEG theta and alpha power increased,
and EEG beta and gamma power decreased. To a large
extent, these neurophysiological changes seem to be reflec-
tive of the task becoming easier during learning, reducing
cognitive effort over time (Krigolson et al., 2015; Leff
et al., 2011; Tinga et al., 2019). Changes in brain activity
during learning interacted with age; EEG theta power
increased more strongly in older than in younger adults
and EEG gamma power decreased in older adults while it

increased slightly in younger adults. The findings on theta
power suggest that although older participants had a gener-
ally lower theta power, the power in this frequency band
increases more strongly during learning. As EEG theta
and gamma power have both been implicated to play a role
in the encoding and retrieval of visuospatial information
and visuospatial learning specifically (Lopez-Loeza et al.,
2016; Sato & Yamaguchi, 2007), the current findings indi-
cate these processes develop differently over time during
learning in younger compared to older adults. Even when
behavioral performance is about equal in younger and older
adults, different networks of brain regions can be employed
by both age groups as demonstrated by studies using func-
tional neuroimaging (Grady & Craik, 2000; Reuter-Lorenz,

Table 4. Relationship (ηp
2) between neurophysiological and behavioral outcome measures in older adults

Outcome measurement ηp
2 correct ηp

2 OT ηp
2 MT ηp

2 RT ηp
2 PV ηp

2 SE ηp
2 NMA

Measures of peripheral physiology

Heart rate .12** .22* .09 .10 .32** .10 .00

Heart rate variability .00 .00 .01 .00 .02 .00 .00

skin conductance level .10** .06 .00 .03 .03 .11* .01

Respiration .00 .07** .04* .09** .00 .01 .04

Eye tracking measures

Pupil diameter .10** .00 .06 .02 .04 .07 .20*

Blinks .03* .00 .01 .01 .00 .01 .04

Blink duration .01 .01 .01 .02 .00 .02 .00

Saccades .00 .00 .00 .00 .01 .00 .00

Saccade duration .00 .02 .07 .03 .11 .01 .00

Fixations .00 .00 .00 .00 .03 .00 .00

Fixation duration .08** .00 .01 .00 .08* .06* .03

Measures of brain activity

Delta total .03 .05 .00 .01 .00 .09* .00

Delta frontal .02 .05 .01 .02 .00 .08* .00

Delta central .04 .06 .00 .02 .00 .10* .00

Delta parietal .03 .02 .00 .00 .00 .08* .00

Theta total .18*** .12* .00 .09* .15* .18*** .00

Theta frontal .20*** .10* .00 .08* .16** .19*** .00

Theta central .16*** .15* .00 .11* .13* .18*** .00

Theta parietal .17*** .08* .00 .07* .11* .17*** .00

Alpha total .11*** .06 .07 .12* .05 .12** .01

Alpha frontal .12*** .04 .07* .10* .07 .12** .00

Alpha central .08** .06 .06 .11* .06 .10** .01

Alpha parietal .09*** .06 .06* .12* .01 .09** .00

Beta total .03 .01 .01 .00 .09 .05 .03

Beta frontal .03 .02 .01 .00 .10 .05 .03

Beta central .04* .01 .01 .00 .09 .05* .02

Beta parietal .03 .00 .00 .01 .06 .03 .02

Gamma total .21** .18* .00 .11 .00 .29** .00

Gamma frontal .18** .17 .00 .10 .00 .25** .00

Gamma central .21** .20* .00 .13 .00 .30** .00

Gamma parietal .22** .15 .00 .09 .00 .28** .00

Note. ***p < .001; **p < .01; *p < .05.
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2002). This suggests that the brain can be differently
employed in older adults in order to perform a task well.

No age differences were demonstrated on other neuro-
physiological outcome measures, suggesting changes in
brain activity during learning to be more sensitive to age
differences than changes in peripheral physiology. This
finding is important in several respects. First of all, it indi-
cates that the effect of age on neurophysiological changes
during learning reported in the meta-analysis by Tinga
and colleagues (2019) might mainly be due to the fact that
included studies predominantly examined outcome mea-
sures of brain activity. This means that age differences
might not exist for all neurophysiological changes during
learning. Additionally, the current study suggests that not
only specific response measures in the EEG, that need to
be time-locked to many similar stimuli but also power
bands in the EEG, reflecting more general cognitive
changes that can be measured continuously during learn-
ing, are sensitive to age. These continuous measures of
EEG are easier to employ in a wide range of learning set-
tings including settings outside the laboratory.

Relationship Between Neurophysiology
and Behavioral Performance

The current study also demonstrated that several neuro-
physiological measures provided insight into behavioral
performance on the learning task in both younger and older
adults. These measures included heart rate, pupil diameter,
number of blinks, fixation duration, parietal delta power,
parietal theta power, and alpha power at all sites. However,
several neurophysiological measures provided insight into
behavioral performance in only one of the two age groups.
These results suggest that several neurophysiological mea-
sures provide insight into behavioral performance irrespec-
tive of age, while other neurophysiological outcomes could
provide insight only in younger or older adults. This indi-
cates that the neurophysiological underpinnings of learning
may differ between younger and older adults. Therefore, it
seems to be important to take age into account when aim-
ing to gain insight into behavioral performance through
neurophysiology during learning.

Limitations and Recommendations for
Future Research

In the interpretation of the findings of the current study, it
is important to take into account that age differences in
learning-related changes in neurophysiology were exam-
ined in an exploratory fashion. The findings, therefore,
need to be replicated in future studies, preferably also in
different age groups. The group of older participants

included in the current study was aged 55–62 years with a
mean age of about 58 years. Other studies examining age
differences as discussed in the introduction included a
group of older participants with an average age ranging
from 53 years to 70 years with the average age of all studies
being about 65 years. As the current study demonstrated
age to have an impact on changes in brain activity during
learning, an interesting endeavor for future studies would
be to additionally include participants of an older age than
included in the current study to examine whether findings
replicate and/or become more pronounced. At the same
time, if studies on neurophysiology in learning compare
younger and older adults in light of the workforce, the
age groups used in the current study are preferred. Addi-
tionally, we recommend future studies to collect more
extensive demographic data, such as data on the level of
education and type of occupation of the included younger
and older participants, to assess age differences while con-
trolling for such demographics. Moreover, studies investi-
gating age differences often include information on
participants’ cognitive abilities in addition to information
on demographics. For example, Eppinger and Kray (2011)
employed two psychometric tests to report fluid and crystal-
lized intelligence in their sample in which they investigated
age differences in learning from positive and negative feed-
back. Such information aids in interpreting reported age dif-
ferences and is therefore advisable.

Previous work has also demonstrated factors related to
the learning task, such as whether the feedback is provided
on performance or not and the sensory system in which
learning takes place (Fairclough & Roberts, 2011; Tinga
et al., 2019), to impact neurophysiological changes during
learning. It might therefore be valuable for future work to
examine whether an interplay between task-related factors
and age exists. Additionally, exploring the implications of
the differences in EEG theta and gamma power between
younger and older adults during learning in more detail
might support the development of interventions during
learning in older adults or even in patient groups that deal
with cognitive decline. Theta power was related to
enhanced behavioral performance in both age groups in
the current study. Similarly, previous work (Hanslmayr
et al., 2019) has suggested that enhancing theta power
through audiovisual stimulation leads to enhanced memory
performance. Therefore, intervening on theta power to aid
learning in older adults might be especially promising.

Conclusion

Learning is typically assessed based solely on behavioral
outcomes, but measures of neurophysiology might be
equally valuable. The findings of the current study demon-
strated that a non-invasive measure of brain activity during

�2023 The Author(s). Distributed as a Hogrefe OpenMind article Journal of Psychophysiology (2023), 37(3), 154–167
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learning shows different changes in younger compared to
older adults. Therefore, changes in brain activity during
learning might be more sensitive to age differences than
changes in peripheral physiology. Additionally, when gain-
ing insight into behavioral performance through neurophys-
iology during learning, age differences exist. This indicates
that the neurophysiological underpinnings of learning may
differ between younger and older adults and highlights
the importance of taking age into account when assessing
learning through neurophysiology.
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