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Abstract: There has been an increase of interest in psychometric models referred to as cognitive diagnosis models (CDMs). A critical concern
is in selecting the most appropriate model at the item level. Several tests for model comparison have been employed, which include the
likelihood ratio (LR) and the Wald (W) tests. Although the LR test is relatively more robust than the W test, the current implementation of the LR
test is very time consuming, given that it requires calibrating many different models and comparing them to the general model. In this article,
we introduce the two-step LR test (2LR), an approximation to the LR test based on a two-step estimation procedure under the generalized
deterministic inputs, noisy, “and” gate (G-DINA) model framework, the two-step LR test (2LR). The 2LR test is shown to have similar
performance as the LR test. This approximation only requires calibration of the more general model, so that this statistic may be easily applied
in empirical research.
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Cognitive diagnosis models (CDMs) have received increas-
ing attention within the field of educational and psycholog-
ical measurement. These models are useful tools to
provide diagnostic information about examinees’ cognitive
profiles in domains such as education (e.g., Lee, Park, &
Taylan, 2011), measurement of psychological disorders
(e.g., de la Torre, van der Ark, & Rossi, 2015), and compe-
tency modeling (e.g., Sorrel, et al., 2016). Selection of an
appropriate CDM is based in part on model-data fit.
Model-data fit can be assessed at the test level (e.g., Chen,
de la Torre, & Zhang, 2013; Liu, Tian, & Xin, 2016). If the
model, particularly if it has a general formulation, fits the
data, then it may be useful to study hypothesis about differ-
ences in response processes across items. Relative fit indices
can be used to evaluate the discrepancy among different
statistical models. According to a recent evaluation on the
performance of various goodness-of-fit statistics for relative
fit evaluation at the item level, the likelihood ratio (LR) test
is more robust than other statistics (Sorrel, Abad, Olea,
Barrada, & de la Torre, 2017).

The current implementation of the LR test is very time
consuming, given that it requires to calibrate many differ-
ent models and compare them to the general model.
For this reason, the Wald (W) test (de la Torre & Lee,
2013) is generally preferred. In light of this, the primary

purpose of this study is to investigate the performance of
an approximation to the LR test, the two-step LR (2LR) test,
which only requires to estimate the more general model
once. Reduced model item parameters are estimated at
the item level (i.e., one item at a time) rather than at the
test level (i.e., all the items in the test simultaneously)
following an alternative, heuristic estimation procedure
originally introduced by de la Torre and Chen (2011) and
further explored here. This procedure is based on the the
generalized deterministic inputs, noisy, “and” gate (G-DINA;
de la Torre, 2011) model framework. The rest of the article
is structured as follows. Next section provides background
information about CDMs and model comparison. The
design of the simulation study is described thereafter.
Subsequently, some results are presented to demonstrate
the performance of the estimation procedure and the
performance of the new statistic compared to the LR and
W tests. The last section provides the concluding remarks.

Cognitive Diagnosis Modeling

Cognitive Diagnosis Modelings are multidimensional, cate-
gorical latent-traitmodelsdevelopedprimarily for identifying
which attributes (e.g., skills,mental disorders, competencies)
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are mastered and which ones do not (see, e.g., Rupp &
Templin, 2008, for an overview of these models). For an
assessment diagnosing K attributes, examinees are grouped
into 2K latent classes. Latent classes are represented by an
attribute vector denoted by αl = (αl1, αl2, . . ., αlK), where
l = 1, . . ., 2K. Specifically, αlK = 1 or 0 represents mastery or
nonmastery of attribute k, respectively. In each latent class,
examinees all have the same probability of success on a
particular item j, denoted by PðXj ¼ 1jαlÞ ¼ PjðαlÞ. In other
contexts (e.g., measurement of psychological disorders),
PjðαlÞ indicates the probability of item endorsement. The
attributes that are required to correctly answer each item
are defined in a J� Kmatrix, commonly known as Q-matrix
(Tatsuoka, 1990), where J is the test length.

Several general models that encompass reduced CDMs
have been proposed, including the above-mentioned
G-DINA model. The G-DINA model is a generalization of
the deterministic inputs, noisy, “and” gate (DINA; Haertel,
1989) model that describes the probability of success on
item j in terms of the sum of the effects of the attributes
involved and their corresponding interactions. Let the num-
ber of required items for item j be denoted by K�

j . In this
model, latent classes are sorted into 2K

�
j latent groups. Each

of these latent groups represents one reduced attribute
vector α�

lj . The probability of success associated to α�
lj is

defined as

Pðα�
ljÞ ¼ δj0 þ

XK�
j

k¼1

δjkαlk þ
XK�

j

k0¼kþ1

XK�
j �1

k¼1

δjkk0αlkαlk0

þ δj12...K�
j

YK�
j

k¼1

αlk; ð1Þ

where δj0 is the intercept or baseline probability for item j,
δjk is the main effect due to αk; δjkk0 is the interaction effect
due to αk and αk0 , and δj12...K�

j
is the interaction effect

due to α1,...,αK�
j
: Thus, there are 2K

�
j parameters to be esti-

mated for item j.
By constraining the parameters of the saturated model,

de la Torre (2011) has shown that some of the commonly
used reduced CDMs can be obtained, including the DINA
model and the additive CDM (A-CDM; de la Torre, 2011).
To compare the different models in a more straightforward
manner, this article uses φj to represent reduced model
item parameters across all reduced CDMs. Namely, φj0 is
the intercept for item j, φjk is the main effect due to αk,
and φj12���K�

j
is the interaction effect due to α1; . . . ;αK�

j
. The

DINA model is a conjunctive model, that is, an examinee
needs to have mastered all required attributes to correctly
answer a particular item. As such, the DINA model sepa-
rates examinees into two latent groups for each item: one
group with examinees who have mastered all attributes
required by the item and one group with examinees lacking

at least one. The probability of correct response is repre-
sented by the DINA model as follows:

P
�
α�
lj

� ¼ φj0 þ φj12���K�
j

YK�
j

k¼1

αljk: ð2Þ

Therefore, the DINA model has two parameters per item
and is deduced from the G-DINA model by setting to zero
all terms except for δj0 and δj12...K�

j
to zero. For the A-CDM,

all the interaction terms are dropped. The item response
function is given by

P
�
α�
lj

� ¼ φj0 þ
XK�

j

k¼1

φjkαjlk: ð3Þ

This is the G-DINA without the interaction terms, and it
shows that mastering attribute αlk raises the probability of
success on item j by φjk. There are K�

j þ 1 parameters for
item j in the A-CDM. In this respect, the DINA model
involves a conjunctive process, whereas the A-CDM
involves an additive process. Figure 1 gives a graphical
representation of an item requiring two attributes when it
conforms to the DINA, A-CDM, or the G-DINA model.
As can be observed from Figure 1, in the DINAmodel latent
classes are sorted into two latent groups. Examinees who
have mastered all attributes required by the item have a
probability of correct response equal to φj0 þ φj12���K�

j
. Exam-

inees lacking at least one attribute will have a probability of
correct response equal to the baseline probability (i.e., φj0).
In the case of the A-CDM, each attribute has a main
impact. For example, examinees mastering only the first
attribute will have a probability of success equal to
φj0 þ φj1.

Model Comparison in CDM

Each CDM assumes a different cognitive process involved
in responding to an item (e.g., conjunctive or additive).
The task in model selection is to select the model that is
the best fit to the data. For nested CDMs, model selection
at the item level can be done using the three common tests
for assessing relative fit (Buse, 1982): likelihood ratio (LR),
Wald (W), and Lagrange multiplier (LM) tests. In all the
three cases, the statistic is assumed to be asymptotically
w2 distributed with 2K

�
j � p degrees of freedom, where p is

the number of parameters of the reduced model.
To investigate the finite sample performance of these

tests, Sorrel et al. (2017) conducted a simulation study.
Overall the Type I error and power comparisons favored
LR and W tests over the LM test. LR was found to be rela-
tively more robust than the W test. However, the appealing
advantage of using the W test is that it required only the
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unrestricted model (i.e., G-DINA) to be estimated. In con-
trast, the LR test required J* � NR + 1 models to be
estimated, where J� is the number of items measuring
more than one attribute and NR is the number of reduced
models to be tested. In this study, we propose an approxi-
mation to the LR test, 2LR, which also has the appealing
advantage of only requiring the G-DINA model to be esti-
mated. In the following, we will describe how the 2LR test
is computed.

Approximation to the LR test

The LR test is a statistical test used to compare the good-
ness-of-fit of two models, one of which is nested in the
other. Because adding additional parameters to a more
general model will always result in a higher likelihood,
CDMs with general formulations will provide a better fit
to the data. The LR test provides one objective criterion
for evaluating if the more general model fits a particular
dataset significantly better. In the traditional implementa-
tion of the LR test in the CDM context, the more general
model, the G-DINA model, is estimated for all the items.
This model is compared with a reduced model fitted to a
target item, whereas the G-DINA model is fitted to the rest
of the items. Both model specifications are estimated and
the LR statistic is computed as twice the difference in the
log-likelihoods. The application of the LR test requires com-
paring the different combinations of the models. To obtain
the likelihood of a model, both item parameter and poste-
rior distribution estimates are needed. Rojas, de la Torre,

and Olea (2012) found that the attribute classification accu-
racy of the G-DINA model is the best when the underlying
model is not known. de la Torre and Chen (2011) intro-
duced a procedure for estimating the reduced model item
parameters using the attribute classification obtained with
the G-DINA. Let us review their proposal.

Two-Step Estimation Procedure
de la Torre and Chen (2011) originally introduced an alter-
native estimation procedure that uses the G-DINA esti-
mates for efficiently estimating the parameters of several
reduced CDMs. This method is referred to as two-step esti-
mation procedure because the estimation of the item
parameters (i.e., φj) for the reduced CDMs is done in two
steps. The first step involves estimating the G-DINA model
parameters, Pj ¼ P α�

lj

� �n o
: The second step involves com-

puting the corresponding φj of the reduced models. de la
Torre (2011) showed that Pj can be estimated using an
expectation-maximization (EM) implementation of the
marginal maximum likelihood (MML) estimation. Briefly,
it can be shown that the MML estimate of the parameter
P α�

lj

� �
is given by

P̂
�
α�
lj

� ¼
Rα�

lj

Iα�
lj

; ð4Þ

where Iα�
lj
and Rα�

lj
are the expected number of examinees

and correct responses in the latent group α�
lj, respectively.

Once Pj has been estimated, item parameters φj can be
obtained through some linear transformations or maximiza-
tion processes. For DINA model, a 2K

�
j � p design matrixM
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Figure 1. This figure depicts the probability of correctly answering an item requiring two attributes for the DINA, A-CDM, and G-DINA models. Item
parameters are denoted by δ.

M. A. Sorrel et al., Two-Step Likelihood Ratio Test for Item-Level Model Comparison in Cognitive Diagnosis Models 41

� 2017 Hogrefe Publishing. Distributed under the
Hogrefe OpenMind License http://dx.doi.org/10.1027/a000001

Methodology (2017), 13(Supplement), 39–47

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
31

 -
 F

ri
da

y,
 A

pr
il 

19
, 2

02
4 

6:
00

:5
1 

A
M

 -
 I

P 
A

dd
re

ss
:3

.2
1.

93
.4

4 



can be used to linearly transform the G-DINA model
parameters into reduced model item parameters, where p
is the number of model parameters. To illustrate, let
K�

j ¼ 2. The saturated design matrix is

MðSÞ
4�4 ¼

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

0
BBB@

1
CCCA: ð5Þ

In deriving the reduced models, subsets of functions of
subsets of the columns of MðSÞ are used. For example, the
design matrix for the DINA model would be

M4�2 ¼

1

1

1

1

0

0

0

1

0
BBB@

1
CCCA: ð6Þ

The design matrix for the DINA model indicates that all
elements of Pj contain φj0 whereas only the last element
contains φj12���K�

j
. Several elements of Pj need to be com-

bined to obtain φj. These elements are differentially
weighted to account for the relative size of the latent
classes. DINA model estimates are obtained by

φ̂j ¼ M0WMð Þ�1M0WP̂j; ð7Þ

where W is a diagonal matrix W
2
K�
j � 2

K�
j
¼ �

Iα�
lj

�
and

P̂j ¼
�
P̂
�
α�
lj

��
.

For A-CDM, however, the design matrix cannot be used
becauseφj cannot be expressed as a simple linear combina-
tion of the elements of Pj. Instead, the parameter estimates
can be obtained by maximizing the likelihood of φj given
Rj ¼

�
Rα�

lj

�
and Ij ¼

�
Iα�

lj

�
obtained in the first step as

follows:

L
�
φjjRj; Ij

� ¼
Y2K �

j

l¼1

PðRÞðα�
ljÞ

Rα�
lj
�
1� P Rð Þ�α�

lj

��ðIα�lj�Rα�
lj
Þ
;

ð8Þ
where PðRÞðα�

ljÞ is the probability of success implied by the
reduced model. In this article we explore how this
estimation procedure can be used as a basis in efficiently
computing an approximation to the LR test.

Two-Step Likelihood Ratio Test
Item-level maximum likelihoods for the saturated and
reduced models can be computed based on the estimated
item parameters and attribute distribution. Item parameters
are those estimated for G-DINA and the reduced model
(i.e., DINA or A-CDM), whereas the attribute distribution
is obtained in the first step based on the G-DINA model.

Comparing the two marginalized likelihoods using a LR test
can be useful to find out if a reduced model is appropriate
for those items measuring more than one attribute. We pro-
posed the 2LR test as an efficient way of computing the
statistic, and it is computed as

2LRj ¼ 2 logL PjjRj; Ij
� �� logL φjjRj; Ij

� �h i

� χ2
�
2K

�
j � p

�
; ð9Þ

where Pj is the vector of GDINA item parameters and φj

is the vector of reduced model parameters for item j.
The likelihood function that is employed is the one rep-
resented in (8). Compared to the LR test, only one
model (i.e., G-DINA) is estimated. Given that the two-
step estimation procedure is the basis of the new statis-
tic, it is pivotal to ensure its accuracy under plausible
scenarios.

Method

A simulation study was conducted to assess the accuracy of
the two-step item parameter estimates and performance of
the 2LR test compared to the LR and W tests. Four factors
were varied and their levels were chosen to represent
realistic scenarios. These factors were: (1) generating model
(MOD; DINA model and A-CDM); (2) test length (J; 30 and
60 items); (3) sample size (N; 500, 1,000, and 2,000
examinees); and (4) item quality or discrimination, defined
as the difference between the maximum and the minimum
probabilities of correct response according to the attribute
latent profile (IQ; .40, .60, and .80).

The probabilities of success for individuals who mastered
none of the required attributes were fixed to .30, .20, and
.10 for the low, medium, and high item quality conditions,
respectively; the corresponding probabilities for those who
mastered all of the required attributes were fixed to .70,
.80, and .90. For the A-CDM, an increment of .40/K�

j ,
.60/K�

j , and .80/K�
j was associated with each attribute

mastery for the low, medium, and high item quality condi-
tions, respectively. The number of attributes was fixed to
K = 5. The Q-matrix used in simulating the response data
and fitting the models is given in Table 1. This Q-matrix
was constructed such that each attribute appears alone, in
a pair, or in a triple the same number of times as other
attributes. For J = 60, each item was used twice.

For each of the 36 factor combinations, 200 datasets
were generated and DINA, A-CDM, and G-DINA models
were fitted. We evaluated whether the two-step algorithm
is comparable, in terms of estimation accuracy or variabil-
ity, to the standard EM-MML algorithm. For comparison
of estimation accuracy, we computed the bias, φ̂� φ; for

42 M. A. Sorrel et al., Two-Step Likelihood Ratio Test for Item-Level Model Comparison in Cognitive Diagnosis Models
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comparison of estimation variability, empirical SEs (i.e.,
standard deviations across replications) were computed.

The W, LR, and 2LR tests were computed for each data-
set. In addition to assessing whether the 2LR test is a good
approximation to the LR test, we also compared the perfor-
mance of the 2LR and W tests in terms of Type I error and
power. Type I error was computed as the proportion of
times H0 was rejected when the fitted reduced model is
true; power was computed as the proportion of times that
a wrong reduced model was rejected. The significance level
was set at .05. With 200 replicates, the 95% confidence
interval for the Type I error is given by
:05� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:05ð1� :05Þ=200p ¼ :02; :08½ �. A conservative

performance (i.e., Type I error < .02) might be a good char-
acteristic provided the power is not affected. For the pur-
poses of this work, a statistical procedure was considered

to be “good” if it had a Type I error within the [0, .08]
interval and a relatively high power (> .80). The code used
in this article was written in R. Some functions included
in the GDINA (Ma & de la Torre, 2016) package were
employed. The R code can be requested by contacting the
corresponding author.

Results

Two-Step Estimation Procedure

Due to space limits, only the results of comparison in the
worst (N = 500, J = 30, and IQ = LD) and best conditions
(N = 2,000, J = 60, and IQ = HD) are presented in Tables 2
and 3. Items 1, 11, and 21, and 1, 21, and 41 are selected for
J = 30 and J = 60, respectively. These are the same items
that represent K�

j = 1, 2, and 3 for both Q-matrices. In the
case of the DINA model, we study the recovery of the prob-
ability of correct response in the two possible latent groups
(i.e., φj0 and φj0 þ φj12...K�

j
). In the case of the A-CDM, we

study the recovery of the baseline probability and the prob-
ability of correct response for examinees mastering only the
first attribute (i.e., φj0 and φj0 þ φj1).

In the worst condition, differences in terms of bias and
empirical SE between the two algorithms were small, rang-
ing from �.015 to .046, .010 being the mean and 0.012 the
standard deviation. Not surprisingly, there was almost no
difference between the two algorithms in the best condition
– the largest absolute difference was 0.001. Considering
both conditions, we can safely conclude that the differences
of estimation accuracy and variability between the EM-
MMLE and two-step algorithms were negligible. It should
be noted that empirical SEs associated to the A-CDM esti-
mates were usually larger compared to the DINA estimates.
For example, this can be observed for the two-step esti-
mates for item 21 in the worst condition. Empirical SEs
for the A-CDM probabilities were .067 and .101. In the
same condition, empirical SEs for the DINA probabilities
were .038 and .045.

Two-Step Likelihood Ratio Test

Descriptive Analysis
All the item fit statistics were highly correlated. The Pear-
son correlation coefficients ranged from .97 to .99. Average
computing time was recorded separately for each statistic.
As an example, we found that in one of the most extreme
conditions (i.e., N = 2,000, J = 60, and IQ = LD) the LR
and 2LR tests took 475.03 and 1.61 seconds per replicate,
respectively. In other words, the 2LR test was 295 times fas-
ter than the LR test.

Table 1. Simulation study Q-matrix for the J = 30 conditions

Attribute

Item α1 α2 α3 α4 α5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

6 1 0 0 0 0

7 0 1 0 0 0

8 0 0 1 0 0

9 0 0 0 1 0

10 0 0 0 0 1

11 1 1 0 0 0

12 1 0 1 0 0

13 1 0 0 1 0

14 1 0 0 0 1

15 0 1 1 0 0

16 0 1 0 1 0

17 0 1 0 0 1

18 0 0 1 1 0

19 0 0 1 0 1

20 0 0 0 1 1

21 1 1 1 0 0

22 1 1 0 1 0

23 1 1 0 0 1

24 1 0 1 1 0

25 1 0 1 0 1

26 1 0 0 1 1

27 0 1 1 1 0

28 0 1 1 0 1

29 0 1 0 1 1

30 0 0 1 1 1

Note. The Q-matrix for the J = 60 conditions is doubled from this Q-matrix.
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Type I Error
Type I error study results are presented in Table 4. The LR
and 2LR tests were generally preferable to the W test.
Type I error for the 2LR test was very similar to that
obtained for the LR test. With the exception of low discrim-
inating items, the 2LR and LR tests had an acceptable
Type I error. LR and 2LR Type I error was close to the nom-
inal level with low quality items when the sample size and
test length were large (N = 2,000 and J = 60). 2LR Type I
error was particularly good for DINA generated data. It was
the only one lower than the upper limit of the confidence
interval with medium quality items and a small sample size
and test length (N = 500 and J = 30). The W test generally
required a larger sample size. For example, W Type I error

rate was inflated with medium quality items and small
sample size (N = 500 and 1,000).

Power
Power study results are presented in Table 5. Power results
should always be interpreted with some caution because
power comparisons require equal Type I error. More liberal
tests have a higher power because they tend to overesti-
mate the significance. Power for all statistics was always
higher than 0.80 and close to 1.00 in the high and medium
discrimination conditions. In the case of the low quality
items conditions, a large number of examinees (i.e.,
1,000 or 2,000) or items (i.e., 60) were needed to reach
acceptable values (i.e., > 0.80). 2LR power tended to be

Table 2. Selected item estimates for the DINA model

Bias Empirical standard error

N J IQ Item Estimation algorithm φj0 φj0 þ φj12���K�
j

φj0 φj0 þ φj12���K�
j

2000 60 HD 1 EM-MMLE .000 .001 .012 .008

Two-step .000 .001 .012 .008

21 EM-MMLE .001 .000 .009 .009

Two-step .001 .000 .009 .009

41 EM-MMLE �.001 .000 .009 .010

Two-step �.001 .000 .009 .010

500 30 LD 1 EM-MMLE �.010 �.001 .073 .030

Two-step .036 .001 .081 .034

11 EM-MMLE .003 .001 .043 .031

Two-step .029 .008 .052 .039

21 EM-MMLE .001 �.002 .030 .039

Two-step .018 .003 .038 .045

Notes. Generating values for the probabilities in the low discrimination (high discrimination) conditions were .30 (.10) and .70 (.90) for φj0 and φj0 þ φj12���K�
j
,

respectively. N = sample size; J = test length; IQ = item quality; HD = high discrimination; LD = low discrimination.

Table 3. Selected item estimates for the A-CDM

Bias Empirical standard
error

N J IQ Item Estimation algorithm φj0 φj0 þ φj1 φj0 φj0 þ φj1

2000 60 HD 1 EM-MMLE �.001 .001 .012 .007

2-step �.001 .001 .012 .007

21 EM-MMLE �.001 .000 .016 .022

2-step �.001 �.001 .016 .021

41 EM-MMLE .000 �.001 .017 .025

2-step .000 �.002 .017 .025

500 30 LD 1 EM-MMLE .003 �.004 .082 .040

2-step .033 �.005 .086 .040

11 EM-MMLE .001 .002 .079 .097

2-step .022 .022 .075 .098

21 EM-MMLE �.008 �.010 .060 .116

2-step .004 .003 .067 .101

Notes. Generating values for the probabilities in the low discrimination (high discrimination) conditions were .30 (.10) for φj0 and .70, .50, and .43 (.90, .50,
and .37) for φj0 þ φj1 for items 1, 11, 21, respectively. N = sample size; J = test length; IQ = item quality; HD = high discrimination; LD = low discrimination.
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Table 5. Power of the item fit statistics (LR, 2LR, and W) for the DINA and A-CDM models

Generating, true model: DINA Generating, true model: A-CDM

Factors Fitted, false model: A-CDM Fitted, false model: DINA

IQ J N LR 2LR W LR 2LR W

HD 30 500 1.000 1.000 1.000 1.000 1.000 1.000

1,000 1.000 1.000 1.000 1.000 1.000 1.000

2,000 1.000 1.000 1.000 1.000 1.000 1.000

60 500 1.000 1.000 1.000 1.000 1.000 1.000

1,000 1.000 1.000 1.000 1.000 1.000 1.000

2,000 1.000 1.000 1.000 1.000 1.000 1.000

MD 30 500 1.000 1.000 1.000 .860 .956 .938

1,000 1.000 1.000 1.000 .994 .999 .996

2,000 1.000 1.000 1.000 1.000 1.000 1.000

60 500 1.000 1.000 1.000 .971 .979 .980

1,000 1.000 1.000 1.000 1.000 1.000 1.000

2,000 1.000 1.000 1.000 1.000 1.000 1.000

LD 30 500 .595 .748 .759 .526 .776 .799

1,000 .819 .952 .905 .589 .893 .837

2,000 .979 .999 .987 .721 .959 .892

60 500 .835 .916 .914 .533 .706 .749

1,000 .984 .996 .991 .722 .906 .849

2,000 1.000 1.000 1.000 .963 .995 .975

Notes. Shaded cells correspond to values in the [.80, 1.00] interval. Values shown in bold correspond to conditions where the actual Type I error was within
the [.00, .08] interval. IQ = item quality; J = test length; N = sample size; LR = likelihood ratio test; 2LR = two-step likelihood ratio test; W = Wald test;
HD = high discrimination; MD = medium discrimination. LD = Low discrimination.

Table 4. Type I error of the item fit statistics (LR, 2LR, and W) for the DINA and A-CDM models

Factors DINA A-CDM

IQ J N LR 2LR W LR 2LR W

HD 30 500 .066 .022 .053 .058 .029 .079

1,000 .062 .022 .090 .054 .029 .063

2,000 .058 .022 .069 .048 .027 .054

60 500 .061 .017 .055 .052 .016 .061

1,000 .060 .017 .076 .051 .016 .055

2,000 .051 .015 .062 .047 .015 .049

MD 30 500 .101 .075 .163 .145 .110 .233

1,000 .068 .065 .109 .074 .083 .116

2,000 .062 .060 .078 .053 .079 .067

60 500 .070 .026 .105 .069 .033 .098

1,000 .061 .026 .079 .059 .034 .070

2,000 .050 .020 .060 .054 .031 .057

LD 30 500 .358 .443 .595 .374 .235 .581

1,000 .223 .334 .430 .297 .290 .519

2,000 .131 .278 .235 .224 .316 .371

60 500 .199 .131 .323 .302 .133 .418

1,000 .101 .096 .190 .156 .144 .262

2,000 .071 .082 .102 .075 .118 .116

Notes. Shaded cells correspond to values in the [.00, .08] interval. IQ = item quality; J = test length; N = sample size; LR = likelihood ratio test; 2LR =
two-step likelihood ratio test; W = Wald test; HD = high discrimination; MD = medium discrimination; LD = low discrimination.
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higher that of the LR and W tests. For example, this was
usually the case in the medium item quality conditions.
It should be noted that in these conditions the 2LR
Type I error was within the [0, .08] interval. In addition,
it is important to note that, in the case of A-CDM generated
data, 2LR power was much higher than that of the LR test
in the low quality conditions, being .68 and .87 the marginal
means associated to the LR and 2LR tests, respectively.

Discussion

Model-fit has received greater attention in the recent CDM
literature (e.g., Chen et al., 2013; de la Torre & Lee, 2013;
Hansen, Cai, Monroe, & Li, 2016; Liu et al., 2016; Sorrel
et al., 2017). This an important area of research because
proper application of a statistical model requires the assess-
ment of model-data fit. Different reduced CDMs with dif-
ferent assumptions have been proposed in the literature.
For example, the DINA model assumes a conjunctive
process in that only individuals who master all required
attributes are expected to correctly answer the item and
the A-CDM assumes that the different attributes measured
by the item contribute independently to the probability of
correctly answer the item. A critical concern is in selecting
the most appropriate model for each item from the avail-
able CDMs. To do so, several tests for model comparison
have been employed, which include LR and the W tests.
Although it has been found in the CDM context that the
LR test is relatively more robust than the W test (Sorrel
et al., 2017), the current implementation of the LR test is
very time consuming, given that it requires to calibrate
many different models and compare them to the general
model. For this reason, the W test is generally preferred
(e.g., de la Torre et al., 2015; Ravand, 2016) and is the
one implemented in the software available (e.g., the CDM
and GDINA packages in R; Ma & de la Torre, 2016;
Robitzsch, Kiefer, George, & Uenlue, 2016).

In this work, we introduce an efficient approximation to
the LR test, 2LR, based on a two-step estimation procedure
under the G-DINA model framework originally introduced
by de la Torre and Chen (2011). Results indicate that this
two-step estimation procedure is comparable in terms of
estimation accuracy and variability to the standard proce-
dure based on EM-MMLE. Mean absolute differences and
empirical standard errors produced by the two algorithms
were very similar, even in the worst conditions. This shows
that the estimates based on the two-step estimation proce-
dure can be used to develop the approximation to the LR
test.

The simulation study results allow us to draw several
conclusions about the performance of the LR, 2LR, and
W tests. First, the LR and 2LR tests were highly correlated.

The performance of the 2LR test was very similar to that of
the LR test. However, the computation of the 2LR test was
remarkably faster. Secondly, the LR and 2LR tests were
found to perform better than the W test. Thirdly, there
was a large effect of the item quality. Type I error was close
to the nominal level when the item quality was medium or
high. In the poor discriminating item conditions, Type I
error was inflated but in the case of the LR and 2LR tests
this could be compensated by increasing the number of
items or the sample size. Power decreased in the poor
discriminating conditions. It is noteworthy that 2LR power
was the least affected in these conditions and tended to
be high. In sum, the 2LR test can be recommended for
use in empirical research.

Following are some of the limitations of the current
study and several avenues for future research. First,
although not considered here, there is an additional reason
to prefer the LR test over the W test – the LR test does not
require the standard errors of the item parameter esti-
mates, whereas the W test does. Future studies should
explore the advantages of this feature. Second, all items
were simulated to have the same discrimination power.
This might not be feasible in practice. Finally, we focus
on the DINA and A-CDM models and five attributes.
Future studies might manipulate the number of attributes
and try to extend this results to other models such as the
deterministic inputs, noisy “or” gate (DINO) model (Templin
& Henson, 2006), the linear logistic model (LLM; Maris,
1999), and the reduced reparameterized unified model
(R-RUM; Hartz, 2002).
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