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Abstract: It is challenging to apply exploratory factor analysis (EFA) to event-related potential (ERP) data because such data are characterized
by substantial temporal overlap (i.e., large cross-loadings) between the factors, and, because researchers are typically interested in the results
of subsequent analyses (e.g., experimental condition effects on the level of the factor scores). In this context, relatively small deviations in the
estimated factor solution from the unknown ground truth may result in substantially biased estimates of condition effects (rotation bias).
Thus, in order to apply EFA to ERP data researchers need rotation methods that are able to both recover perfect simple structure where it
exists and to tolerate substantial cross-loadings between the factors where appropriate. We had two aims in the present paper. First, to
extend previous research, we wanted to better understand the behavior of the rotation bias for typical ERP data. To this end, we compared the
performance of a variety of factor rotation methods under conditions of varying amounts of temporal overlap between the factors. Second, we
wanted to investigate whether the recently proposed component loss rotation is better able to decrease the bias than traditional simple
structure rotation. The results showed that no single rotation method was generally superior across all conditions. Component loss rotation
showed the best all-round performance across the investigated conditions. We conclude that Component loss rotation is a suitable alternative
to simple structure rotation. We discuss this result in the light of recently proposed sparse factor analysis approaches.
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Event-related potential (ERP) data are a common electro-
physiological measure of brain activity that is time-locked
to an event (e.g., a stimulus presented to the participant;
Luck, 2014). They are computed from a continuous elec-
tro-encephalogram (EEG) typically recorded with a high
sampling rate (e.g., 512 Hz) at multiple electrode sites
(e.g., 64 or 128) from the participant’s scalp. For each par-
ticipant, the continuous EEG signal is cut into epochs
around the events of interest (e.g., stimuli in several exper-
imental conditions) and averaged across repetitions of the
same event to improve the signal-to-noise ratio. Assuming
that the events of interest represent stimuli under different
experimental conditions, this procedure results in an
average time series for the electric potential for each exper-
imental condition and electrode per participant. Through-
out this paper, we will refer to such a dataset as an ERP
dataset.

Researchers are typically interested in amplitude (or
latency) differences between the ERPs from different
experimental conditions. Such analyses are challenging
for at least two reasons: First, due to the large number of

sampling points and electrodes, comparisons between con-
ditions typically face massive multiple testing problems.

Second, the observed voltage at the scalp is a 2Dmixture
of temporally and spatially overlapping source signals gen-
erated in a 3D space in the brain – complicating functional
interpretations of the observed differences. Exploratory fac-
tor analysis (EFA) has been used to reduce the multiple
testing problem (but see also Groppe, Urbach, & Kutas,
2011a, 2011b; Maris, 2004), and to characterize the mixture
of signals in a data-driven way (i.e., without any anatomical
knowledge; Chapman & McCrary, 1995; Dien, 2012;
Donchin, 1966, 1978; Kayser & Tenke, 2005). In principle,
EFA can be conducted in the temporal or in the spatial
domain (or in both; Dien, 2010a; Dien & Frishkoff,
2005). Here, we will focus on EFA in the temporal domain.

For the sake of completeness, it should be noted that
such analyses are often conducted using Principal Compo-
nent Analysis (PCA) rather than EFA. The main difference
between EFA and PCA is that the former includes explicit
error terms for each variable (i.e., sampling point), whereas
the latter does not (see e.g., Widaman, 2007, 2018). From
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this perspective, PCA estimates a restricted EFA model in
which all error variances are fixed to zero (McDonald,
1996). Consequently, differences between EFA and PCA
are negligible when the error variances approach zero
and/or the number of observed variables is high. It has
been argued that this is typically the case for ERP data
(Dien, Beal, & Berg, 2005), but there is no guarantee that
this precondition holds for every application EFA or PCA
to ERP data. Therefore, we refer to this data analytic
approach (i.e., either EFA or PCA) by the more general
term EFA throughout this work.

When applying temporal EFA to ERP data, an important
precondition for drawing valid substantive conclusions is
the correct allocation of condition effects to the latent fac-
tors. For instance, when there are two factors in the popula-
tion of which only one is affected by the experimental
condition, the sample estimates should (on average) resem-
ble this pattern. Situations in which this is not the case have
been referred to as variance misallocation in the literature
(Dien, 1998; Dien et al., 2005; Kayser & Tenke, 2003; Wood
& McCarthy, 1984). Research has identified biased factor
loading estimates as amajor source of variancemisallocation
and emphasized the importance of the factor rotation step
for variance misallocation (Dien, 2010a; Möcks & Verleger,
1986; Scharf & Nestler, 2018). With the present research, we
aimed, first, to better characterize the role of factor rotation
for the occurrence of variance misallocation, and, second, to
compare the performance of a wide range of common rota-
tion criteria, including the recently proposedComponent loss
rotations (Jennrich, 2004, 2006), for this specific applica-
tion. This comparison is also relevant from a more general
methodological perspective because some of the investi-
gated rotation criteria have rarely been considered in previ-
ous simulation research (e.g., Schmitt & Sass, 2011).

The present article is organized as follows: First, we
briefly explain the temporal EFA model in the context of
ERP data and describe a prototypical data analytic proce-
dure followed by a technical definition of variance misallo-
cation. Then, we explain the factor rotation step in more
detail and elaborate on how it is related to the variance
misallocation problem. Afterward, we report the results of
a simulation study in which we compared the performance
of various rotation techniques under a variety of conditions
in which we manipulated the amount of temporal overlap,
the size of the factor correlations and the amount of topo-
graphic overlap. Finally, we derive recommendations
regarding the choice of the rotation method and discuss
future research questions.

Temporal EFA for ERP Data

Temporal EFA operates on a p � n ERP data matrix T in
which the p sampling points are treated as variables (T-tech-
nique; Cattell, 1952), and the data from all electrodes, con-
ditions, and participants are treated as observations of the
data matrix (i.e., n = nelectrodes � nconditions � nparticipants). That
is, the voltage at each sampling point is decomposed into a
weighted sum of m underlying factors. This factor model
can be expressed in matrix notation as (e.g., Mulaik, 2010):

T ¼ Λ � gþ �; ð1Þ
where Λ is a p � mmatrix of factor loadings, η is an m � n
matrix of factor scores, and � is the p � n matrix of error
terms. Put simply, the factor loadings reflect the time
courses of the latent factors and factors that load higher
on a specific sampling point contribute more to the volt-
age at that sampling point. The amplitudes of the factors
are represented by the factor scores. Importantly, in this
approach, the factor time courses are assumed to be
(approximately) equal across all electrodes, conditions,
and participants and only the amplitudes are allowed to
vary. That is, scalar invariance is assumed (see Putnick
& Bornstein, 2017, for an introduction).

In order to analyze amplitude differences between condi-
tions, the factor scores are obtained (e.g., by utilizing the
regression method; Thomson, 1935; Thurstone, 1935), and
subjected to a general linear model, typically a (robust)
analysis of variance (Dien, 2012, 2017) with the aim of iden-
tifying which factors are affected by an experimental
manipulation. This information is a crucial ingredient for
functional interpretations of the factors, that is, to deter-
mine which cognitive processes are related to the factors
(Luck, 2014). It has been shown that EFA-based quantifica-
tions of ERP signals are superior to more naïve quantifica-
tions such as peak-picking or averaging the voltage in a
time region of interest (Beauducel & Debener, 2003;
Beauducel, Debener, Brocke, & Kayser, 2000).

Research on variance misallocation has shown that this
generally useful analytic approach has certain limitations
that follow from the specific characteristics of ERP datasets
(Dien, 1998, 2010a; Dien et al., 2005; Kayser & Tenke,
2003; Scharf & Nestler, 2018; Wood & McCarthy, 1984).
Most generally, variance misallocation can be defined as
a bias in the effect size estimates (of the condition effects)
with respect to the population model (Scharf & Nestler,
2018).1 Biases in the factor loading estimates are arguably
the main source of variance misallocation (Möcks &

1 Due to the rotational indeterminacy of the EFA model (e.g., Mulaik, 2010), an infinite set of factor correlations and factor loadings have an
equivalent fit to the observed covariance matrix. Hence, the term bias is sometimes considered inappropriate in the context of EFA. However, in
this specific application context, a ground truth (i.e., a generator pattern in the brain) exists – justifying the question to which extent EFA can
blindly recover certain population parameters.

Methodology (2019), 15(Suppl.), 43–60 �2019 Hogrefe Publishing Distributed under the
Hogrefe OpenMind License http://doi.org/10.1027/a000001

44 F. Scharf & S. Nestler, Rotations for Temporal EFA

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
75

 -
 S

at
ur

da
y,

 A
pr

il 
27

, 2
02

4 
2:

03
:5

1 
A

M
 -

 I
P 

A
dd

re
ss

:3
.1

43
.2

28
.4

0 



Verleger, 1986). These biases can occur either due to an
inappropriate choice of orthogonal rotation methods
(orthogonality bias; Scharf & Nestler, 2018), or because of
the rotation procedure in general which biases the results
toward its simple structure criterion (rotation bias; Scharf
& Nestler, 2018; Schmitt & Sass, 2011).

With respect to the orthogonality bias, the use of orthog-
onal rotation methods generally carries a high risk of vari-
ance misallocation because ERP datasets contain the data
from all electrodes and conditions within each participant
in the rows. This has the consequence that the factor
(co-)variances are the sum of (co-)variance contributions
of participants, electrodes, and conditions (Scharf & Nes-
tler, 2018). Especially the contribution of the electrodes
(i.e., the factor topography), makes it highly unlikely that
the overall factor covariances will be zero (Dien, 2010a).
This notion is in line with research showing the superiority
of oblique rotation methods in EFA for ERP data (Dien,
1998; Dien et al., 2005).

The rotation bias is a consequence of the temporal over-
lap between the factors (Dien, 1998; Dien et al., 2005).
Temporal overlap refers to sampling points that have
non-zero loadings on more than one factor (i.e., sampling
points with cross-loadings). It is well-known that the perfor-
mance of factor rotation methods depends on the size of
cross-loadings and that factor rotation methods differ in
their tolerance for cross-loadings (Browne, 2001). More
specifically, most rotation methods tend to underestimate
the cross-loadings at the cost of inflated factor correlations,
and they differ in the extent to which they are prone to
these distortions (Schmitt & Sass, 2011). This implies that
the choice of a suitable rotation technique for a specific
application has a profound impact on the correctness of
the factor solution.

Factor Rotation

In the following, we will briefly describe the mathematical
foundations of factor rotation and introduce some common
oblique factor rotation criteria. On the basis of the findings
on the orthogonality bias, orthogonal rotation methods will
not be further considered here. In general, an infinite set of
parameters (i.e., factor loadings and factor correlations) fits
the covariance matrix of the data equally well in EFA. This
property of the EFA model is typically referred to as rota-
tional indeterminacy, and the mathematical operation that
transforms one set of parameters into another equally
well-fitting set of parameters is called factor rotation (e.g.,
Mulaik, 2010). Mathematically, factor rotation can be
expressed with the following equation (e.g., Mulaik, 2010,
p. 276):

T ¼ ΛH�1|{z}
Λrot

Hg|{z}
grot

þ e|{z}
erot

ð2Þ

Here, H denotes the m � m rotation matrix. Notably, the
error term is not affected by factor rotation (�rot = �),
reflecting the fact that the total amount of variance in
the data that is accounted for by the factors remains
unchanged by the rotation. Since H�1 � H = Im (where
Im denotes an identity matrix of order m), any invertible
matrix H could be used in this transformation, and addi-
tional criteria are required to achieve a unique solution.
Typically, the rotation matrix is determined in a way that
optimizes the interpretability of the factor loading matrix
by striving for a simple structure (Thurstone, 1947). Put
simply, the variables (i.e., sampling points) are assigned
to the factors as distinctly as possible.

To this end, a variety of rotation techniques have been
proposed that differ mainly in the mathematical criterion
f(Λ) that is utilized as operationalization of the simple struc-
ture ideal. Table 1 provides an overview of common oblique
rotation criteria. Many rotation criteria can be subsumed
under the general Crawson-Ferguson (CF) rotation family
that optimizes the criterion (e.g., Crawford & Ferguson,
1970; Sass & Schmitt, 2010):

f Λð Þ ¼ ð1� kÞ �
Xp

i¼1

Xm
j¼1

Xm
l 6¼j;l¼1

k2
ijk

2
il

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variable complexity

þk

�
Xm
j¼1

Xp

i¼1

Xp

l 6¼i;l¼1

k2
ijk

2
lj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
factor complexity

: ð3Þ

The first and second terms reflect the variable (i.e., row)
and factor (i.e., column) complexity of the factor loading
matrix, respectively. The weight k = [0, 1] determines the
extent to which each of these contributions is considered
during factor rotation with higher values indicating more
emphasis on factor complexity. Not all rotation techniques
in Table 1 are members of the CF-family but the distinction
between variable and factor complexity provides a good
framework to describe the rationale of rotation techniques.

For instance, Geomin rotation minimizes the variable-
wise geometric mean of the squared factor loadings.
Specifically, the Geomin criterion can be described by the
following equation (Browne, 2001; Yates, 1987):

f Λð Þ ¼
Xp

i¼1

Ym
j¼1

k2
ij þ e

� �" # 1
m

: ð4Þ
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The product term of a specific variable i in Equation (4) is
small if at least one of the factor loadings for that variable is
close to zero. In that sense, Geomin focuses on variable
complexity. The rotation parameter � is a small constant
value, typically between 0.0001 and 0.01. This is necessary
because, when � is set to zero and one factor loading of a
specific variable is zero, the product of that row would be
zero irrespective of all remaining factor loadings in that
specific row. Recently, a modified Geomin rotation with �

set to 0.5 has been recommended when high cross-loadings
are expected (Marsh, Liem, Martin, Morin, & Nagengast,
2011; Marsh et al., 2010, 2009). With respect to Equation
(4), a higher value of � reduces the relative impact of a sin-
gle small loading on the product term – consequently, the
rotation criterion is less focused on variable complexity.

Component loss rotation is a notable exception from the
reasoning of distinguishing row and column complexity
(Jennrich, 2004, 2006; Mulaik, 2010, Chapter 12.7). Unlike
most simple structure rotation methods, Component loss
rotation does not impose any assumptions about the pattern
of the non-zero loadings. Instead, a general loss function is
minimized, for instance, the sum of the absolute values of
the factor loadings:

f Λð Þ ¼
Xm
j¼1

Xp

i¼1

kij

�� ��: ð5Þ

Consequently, Component loss rotation aims for as many
(close to) zero factor loadings as possible, irrespective of
the distribution of the non-zero loadings across the factor
loading matrix. Component loss rotation is both mathemat-
ically and conceptually very close to recently popularized
regularized estimation methods (e.g., Hastie, Tibshirani, &
Friedman, 2009) in which, for instance, the sum of the
absolute values of the to-be-estimated parameters is added
as a penalty term during parameter estimation (least abso-
lute shrinkage operator, lasso; Tibshirani, 1996). The most
important difference between a Component loss rotated
EFA and a regularized factor analysis is that Component
loss rotation operates on a “traditional” maximum likeli-
hood or least-squares estimated initial model, whereas reg-
ularized estimation methods penalize the estimated
parameters directly during the estimation.

Previous research has revealed that rotation methods dif-
fer in their ability to tolerate cross-loadings with a general
tendency to underestimate cross-loadings while inflating
the factor correlations in the presence of substantial
cross-loadings (Asparouhov & Muthén, 2009; Browne,
2001; Sass & Schmitt, 2010; Schmitt & Sass, 2011). In addi-
tion, there is a trade-off in the sense that rotation tech-
niques that perform well in the presence of cross-loadings
often fail to recover simple structure when it exists. Overall,
in the context of psychometric questionnaires, GeominTa
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rotation has been found to yield reasonable results both for
patterns with low cross-loadings and for patterns with high
cross-loadings (Asparouhov & Muthén, 2009; Sass &
Schmitt, 2010; Schmitt & Sass, 2011), and the modified
Geomin with � = 0.5 has been recommended when high
cross-loadings are expected (Marsh et al., 2011, 2010,
2009). In the context of EFA for ERP data, however, a
Promax rotation with Kaiser normalization has been estab-
lished as the gold standard rotation in the temporal domain
(Dien, 2010a; Dien et al., 2005; Dien, Khoe, & Mangun,
2007). An important limitation of previous research is that
the range of rotation techniques that were considered has
been rather narrow. For instance, Geomin rotation with
modified rotation parameters has not yet been considered
in the context of EFA for ERP data.

To our knowledge, Component loss rotation has not yet
been included in any extensive comparison of rotation tech-
niques – irrespective of the application context. We think
that Component loss rotation is a very interesting approach
because of its slightly different concept of simplicity. In
Component loss rotation no assumptions are made about
the pattern of the zero and non-zero loadings. Rather, many
of the elements of the factor loading matrix are assumed to
be zero, that is, that the population factor loading matrix is
sparse. This less restrictive sparsity assumption suits com-
mon beliefs about ERP factors very well. Dien (2010a)
emphasized that simple structure rotation is appropriate
for temporal EFAs for ERP data due to the transient nature
of ERP factors. That is, ERP factors tend to contribute to
the observed electric potential only in a relatively narrow
time range, and, hence, it seems reasonable to expect many
zero loadings for each factor. However, as mentioned
above, the temporal overlap between the factors poses a
challenge for simple structure rotation. Component loss
rotation may be especially appropriate for ERP factors
because the underlying assumptions explicitly allow for
high cross-loadings (i.e., temporal overlap).

The Present Study

In a simulation study, we investigated the rotation bias of
oblique rotation methods as a source of variance misalloca-
tion, aiming to better characterize its behavior under vari-
ous conditions. The present research extends previous
efforts in at least two ways: First, previous simulation
research included factors with varying temporal overlap
(e.g., Dien, 1998; Dien et al., 2007) but was either limited
to a small set of conditions or did not manipulate the tem-
poral overlap in isolation, making it difficult to disentangle
biases that were due to temporal overlap from biases that
were due to other properties of the factors (e.g., their

topographies). Here, we independently varied the amount
of temporal overlap, the size of the factor correlation, and
the topographic overlap of the factors, so that the relative
contributions of all manipulations to variance misallocation
could be investigated. Second, we considered many com-
mon rotation techniques (see Table 1), including two
recently proposed criteria. Specifically, we included a mod-
ified Geomin rotation with a rotation parameter � of 0.5 and
Component loss rotation to see if they offer any advantages
over traditional simple structure rotation techniques for
ERP applications.

Method

Our simulation approach was based on recent simulations
(Scharf & Nestler, 2018) in which simulated raw data were
sampled on the basis of the common factor model (Equa-
tion 1). A similar approach has been taken, for instance,
by Dien (2010a). We are aware that others have investi-
gated the performance of factor rotation by directly rotating
prototypical population patterns (Beauducel, 2018; Möcks
& Verleger, 1986). However, whereas this approach is
much simpler to implement, neither the consequences of
the special structure of ERP datasets (i.e., multiple elec-
trodes and conditions per participant) nor the potential dif-
ferences in the standard errors of the estimates can be
investigated with it.

Simulation Model
We investigated a set of simulation conditions in which we
varied important determinants of the performance of factor
rotation methods. Specifically, we varied the temporal over-
lap (5), the topographic overlap (2), and the between-partici-
pant correlation (2). The sample ERP datasets T were
arranged as follows: The columns of T represented the
200 sampling points (spread over an epoch of 450 ms),
and the rows contained the data from all 2 � 10 � 20 Condi-
tion � Electrodes � Participant combinations, respectively.
To illustrate the electrode setup, one could think of 10 elec-
trodes placed down the central line on the scalp where Elec-
trode 1 is at the most anterior electrode site and Electrode 10
is at the most posterior electrode site.

The sample data were drawn from a matrix-variate nor-
mal distribution (e.g., Gupta, 2000). That is, T � N (M, V,
Σ), where M, V, and Σ were matrices containing the
expected values, the row (co-)variances, and the column
(co-)variances, respectively. The row covariance matrix
was an identity matrix – resulting in independent samples
between conditions and electrodes. The column covariance
matrix was derived from the common factor model (e.g.,
Mulaik, 2010, p. 136, Equation 6.13). We specified a popu-
lation factor loading matrix Λ with two factors. Figure 1
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illustrates the population factor loading patterns. The time
courses of both factors were created from Gaussian density
functions with a standard deviation of 40ms. Following the
conventions of ERP research, we labeled the factors accord-
ing to their temporal order rather than by the proportion of
variance they explained. The first factor had its peak (i.e.,
mean) at 120 ms. The peak of the second factor was varied
in order to manipulate the temporal overlap of the factors.
We used values of 120 ms (L0), 150 ms (L1), 175 ms (L2),
200 ms (L3), 250 ms (L4), 300 ms (L5), that is, our simu-
lation conditions covered the extreme cases of complete
temporal overlap and complete temporal separation as well
as a range of conditions with partial temporal overlap. The
maximum loadings were 0.8 and 1.0 for the first and sec-
ond factors, respectively. The factor variance was 1, and
the factor correlation (φ12) was 0 or +0.3. For instance, in
the simulation condition with a mildly positive correlation,
participants with a more positive amplitude in the first fac-
tor were likely to show a more positive amplitude for the
second factor. The error covariance matrix was a diago-
nal matrix with mutually uncorrelated errors (white
noise) and a constant noise variance of 0.4 for all sampling
points.

The matrix of expected valuesM was a 2 � 10 � 20 � 200
matrix that contained the expected time courses for each
combination of participant, electrode, and condition in the
rows. Assuming that all deflections of the voltage from zero
were due to the factors, the expected time courses could be
calculated as E(t) = Λ � E(η), where E(η) contains the
expected factor scores for the respective observation
(Scharf & Nestler, 2018). For the simulation, we varied
the expected factor scores E(η) as a function of electrode
site and condition, but both the topographic and condition
effects were held constant across participants (see also
Beauducel & Debener, 2003). Both simulated factors were
affected by the experimental condition: The first factor had
expected factor scores of �1.5 (Condition 1) or �2.5

(Condition 2), and the second factor had expected factor
scores of 2.5 (Condition 1) or 3.5 (Condition 2), respectively.

Following the principles of topographic component mod-
els (Achim & Bouchard, 1997; Möcks, 1988), we introduced
topographic variance by defining a topographic weight for
each electrode that was 1 at the topographic maximum
and otherwise smaller than 1. These topographic weights
were multiplied by the expected factor scores in each con-
dition. For instance, if the topographic weight was 0.5, the
corresponding expected values for Factor 1 was 0.5 � �1.5 =
�0.75 (Condition 1) or 0.5 � �2.5 = �1.25 (Condition 2).
This procedure resulted in realistic factors in the sense that
the condition effects were maximal at the topographic max-
imum and otherwise followed the factor topography –

including sign reversals.
We varied whether topography contributed to both the

factor variances and the factor covariances or only to the
factor variances (Figure 2; Scharf & Nestler, 2018). The
topographic maximum of the first factor was always at
Electrode 1 (“anterior” distribution), and the topographic
weights decreased linearly toward a value of �0.5 at
Electrode 10. In order to create simulation conditions with
varying topographic overlap, we varied the topographic
maximum of the second factors. In simulation conditions
with overlapping topographies, the topographic maximum
was at Electrode 10 (“posterior” distribution), resulting in
a setup where both factors tended to have rather positive
factor scores at posterior electrode sites. In simulation con-
ditions with non-overlapping topographies, the topographic
maximum was at Electrodes 5 and 6 (“central” distribu-
tion). In both cases, the topographic weights decreased lin-
early toward a value of 0.1 at the most distant electrode
sites. These conditions represented two possible extreme
cases: maximal and minimal topographic overlap. The
interested reader is referred to Table S1 in the Electronic
Supplementary Material, ESM 1, for the factor means
derived from this population model.

Figure 1. Population factor loading patterns with decreasing temporal overlap from L0 (left-most) to L5 (right-most). The solid and dashed lines
represent the loadings of the first and second factors, respectively. Figure available from the OSF (https://osf.io/zmtcg/) under a CC-BY 4.0
license.
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Simulation Procedure
The simulations were conducted in R (Version 3.5.1, R Core
Team, 2018). All simulation and analysis scripts are avail-
able at the OSF (https://osf.io/zmtcg/). In each simulation
condition, 1,000 random samples were drawn using the
package LaplacesDemon (Statisticat & LLC, 2016). For each
sample, we ran a parallel analysis to determine the number
of factors that would be used in an actual research setting
(Horn, 1965). However, we always extracted a two-factor
solution because we wanted to focus on a comparison of
the rotated solutions between rotation techniques. The ini-
tial unrotated solution was estimated using a Maximum
Likelihood approach (Lawley & Maxwell, 1971) as imple-
mented in the package psych (Revelle, 2016).

The unrotated solution was rotated by applying each of
the rotation techniques listed in Table 1. All rotation meth-
ods were used in their oblique versions to avoid biases due
to inappropriate orthogonality constraints (Dien, 1998,
2010a; Scharf & Nestler, 2018). Promax rotation was
applied using the psych package, that is, a Kaiser-normal-
ized Varimax rotation was applied in a first step. Then,
the Varimax-rotated loadings were raised to the fourth
power and used as target matrix in the subsequent target
rotation (see also Mulaik, 2010). Component-loss rotation

was implemented using a derivative-free gradient projec-
tion algorithm (Jennrich, 2004).

Geomin (� = 0.0001 or 0.5), Quartimin, Covarimin, Info-
max, Parsimax, and Equamax rotated solutions were
estimated using a gradient projection algorithm as imple-
mented in the package GPArotation (Bernaards & Jennrich,
2005). We supplied the rotation matrix from an oracle tar-
get rotation (i.e., the population loadings were entered as
target) as starting values to the gradient projection algo-
rithm to avoid different local optima between samples
(Hattori, Zhang, & Preacher, 2017; Weide & Beauducel,
2019).2 Except for Promax rotation, all rotations were
applied without prior normalization of the factors.

For each rotated solution, order and sign indeterminacies
inherent to the EFA model were resolved (e.g., Asparouhov
& Muthén, 2009; Mulaik, 2010). Specifically, the factors
were reordered according to the correlations of the esti-
mated loadings with the population factor loadings, and
the factors were multiplied by �1 if the sum of their load-
ings was smaller than one. Finally, the estimated experi-
mental condition effects were quantified as the
standardized differences (Cohen’s d; Cohen, 1977) in the
factor scores at the topographic maximum of the respec-
tive factor. The factor scores were estimated using the

2 More generally, local optima should be avoided by repeating the rotation procedure with multiple random starts. We also ran the simulation
conditions with high temporal overlap (L0, L1, L2) for which local optima are more frequent (Hattori et al., 2017) with 100 random starts for each
rotation. The results remained the same.

(A) (B)

Figure 2. Illustration of the simulated factor means of each factor in the experimental conditions – separately for overlapping (A) and non-
overlapping (B) topographies. Figure available from the OSF (https://osf.io/zmtcg/) under a CC-BY 4.0 license.
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regression method (Thomson, 1935; Thurstone, 1935). As in
the ERP PCA Toolkit, the factor scores were not centered
(Dien, 2010b).

Dependent Measures
We calculated measures of global model fit as well as mea-
sures of parameter recovery, and we quantified the amount
of variance misallocation that could be expected in tests for
differences between experimental conditions. In addition,
we computed how often parallel analysis suggested the
extraction of 1, 2, or more factors across all samples for
each simulation condition. As a measure of global model
fit, we report the standardized root mean residual (SRMR;
Brown, 2014). Notably, this measure cannot be used to
evaluate the performance of rotation techniques because
all rotated solutions for a given dataset have the same
model fit as the unrotated solution due to rotational inde-
terminacy (e.g., Mulaik, 2010). Rather, this measure served
as an indicator of how successfully the observed data could
be described by the estimated factor models.

The recovery of the factor loadings was quantified by the
Tucker congruences (cΛΛ̂; Tucker, 1951) and the Pearson
correlations (rΛΛ̂ ) between the average estimated and the
population factor loading matrix. The former is often used
in simulation studies in a psychometric context (e.g., De
Winter, Dodou, & Wieringa, 2009), whereas the latter is
more common in research on EFA for ERP data (e.g., Dien,
1998). The most important difference is that the correlation
is a measure of similarity (and not of congruence) and is
thus not affected by changes in the average loadings. The
recovery of the factor correlation was quantified as the
absolute bias between the estimated and the population
factor correlation (Biasφ). Finally, we calculated the abso-
lute bias of the estimated effect size measure (Biasδ) in
order to quantify the consequences of biases in the EFA
parameters for the statistical tests of condition effects inde-
pendent of statistical power (see Beauducel & Debener,
2003, for a discussion).

Results

The main results are summarized in Tables 2 and 3 for con-
ditions with overlapping and non-overlapping topographies,
respectively. For applied readers, we note that the bias in
the estimated effect sizes (Biasδ) is the most relevant mea-
sure with respect to the consequences for consecutive sta-
tistical inference. For all conditions, the EFA model fit the
data very well as indicated by SRMR values between 0.03
and 0.04 (Hu & Bentler, 1999). The model fit varied only
as a function of temporal overlap – slightly decreasing as
the temporal overlap increased (L0: SRMR = 0.037, L5:
SRMR = 0.031). In conditions with partial temporal overlap
(L1–L5), parallel analysis suggested the extraction of two

factors in all samples with one notable exception: In the
condition with high temporal overlap (L1), topographic
overlap and a positive factor correlation (i.e., φ12 = 0.3), a
one-factor solution was recommended in 16.5% of the sam-
ples. In conditions with complete temporal overlap (L0), the
extraction of a single factor was indicated in all samples
without exception.

Irrespective of rotation technique and simulation condi-
tion, the estimated factor loadings (Figures 3 and 4) were
too high relative to the population loadings indicating a
rescaling due to the topographic and condition variance
(Scharf & Nestler, 2018). Apart from this, the recovery of
the factor loadings (i.e., time courses) was sufficient for
the majority of the investigated conditions and rotation
techniques as indicated by high factor congruencies (cΛΛ̂)
and correlations (rΛΛ̂). When there was no temporal overlap
(L5), the recovery of the factor loadings was nearly optimal.
When the temporal overlap was substantial (especially L1–
L3), all rotation methods tended to underestimate the
cross-loadings (i.e., loadings within the region of temporal
overlap). This pattern was slightly more pronounced in con-
ditions with non-overlapping topographies and without
between participant correlations (φ12 = 0). In conditions
with perfect temporal overlap, factor rotation tended to col-
lapse the factors yielding one major and one minor factor.

A similar results pattern was found for biases in the factor
correlations (Biasφ) that tended to be more positive with
increasing temporal overlap. In addition, the bias in the fac-
tor correlation tended to be strongly positive in the pres-
ence of topographic overlap. In the absence of
topographic overlap, the bias in the estimated factor corre-
lation was negative for low temporal overlap (L4 or L5) but
positive for conditions with substantial topographic overlap
(L1–L3). For perfect temporal overlap conditions (L0), fac-
tor rotation resulted either in nearly orthogonal factor
(e.g., for Promax) or in extremely correlated factors (e.g.,
Geomin with � = 0.5). The bias in the estimated effect sizes
(Biasδ) generally followed the biases in the EFA parameters;
that is, they were more biased the more the factor loadings
and correlations were biased – with a general tendency to
underestimate the population effect sizes.

The rotation techniques differed primarily in the extent
to which they were prone to these distortions – except for
Covarimin rotation, which yielded strongly inferior results
for almost all conditions, and Infomax, which yielded extre-
mely unstable estimates when the temporal overlap was
perfect (L0). In the majority of the conditions, all rotation
techniques performed quite similarly with small perfor-
mance advantages for the Promax, Geomin and Compo-
nent loss rotations. However, in conditions with very high
temporal overlap (L1), substantial factor correlation and/
or overlapping topographies, we observed a conflation of
the factors for the Promax, Geomin (0.0001), and
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Quartimin rotations (e.g., upper-most subfigure in the left-
most column in Figure 3). That is, they yielded a solution
with a large factor that spanned the time range of both fac-
tors and an additional smaller factor that explained some of
the remaining variance. This artifact was also visible in the
biases of the factor correlations that became much less pos-
itive compared with rotation techniques that did not con-
flate the factors. When looking at the raw factor
correlations, the factors in conflated solutions were (almost)
uncorrelated. Conflated solutions occurred across all sam-
ples irrespective of the number of factors that was indicated
by parallel analysis in the respective sample and resulted in
profound biases in the effect size estimates (up to �0.50).

Of the remaining rotation techniques, Component loss
performed best in conditions with temporal overlap (L1) –
followed closely by the Geomin (0.5) rotation. Both rotation
techniques were immune to conflated solutions and showed
substantially smaller biases on all measures for these condi-
tions. However, Geomin (0.5) yielded small spurious cross-
loadings in conditions without temporal or topographic
overlap. Therefore, considering the results across all condi-
tions, Component loss rotation showed the best perfor-
mance by far. It was not prone to conflated solutions
when the temporal overlap was high, it was able to recover
the factors in the absence of temporal overlap (L5), and it
yielded generally almost unbiased effect size estimates. In
fact, there were only two conditions (both L1 conditions
without topographic overlap) in which Component loss
rotation was slightly inferior to the Promax rotation.

Discussion

In the present study, we compared the performance of a
variety of oblique simple structure rotation techniques
and Component loss rotation for a wide range of conditions
typical of EFA applications to ERP data. We observed char-
acteristic biases in the factor loading and factor correlation
estimates that were a function of temporal overlap and the
factor topography. In line with its gold standard status in
ERP applications of temporal EFA (Dien, 1998; Dien
et al., 2005), Promax rotation performed very well com-
pared with all other simple structure rotations – except for
conditions with high temporal and topographic overlap in
which it yielded conflated factors. However, Component
loss rotation was clearly the most flexible rotation tech-
nique, performing best or second best in all of the condi-
tions we investigated.

All observed biases are easy to explain when considering
the consequences of the structure of ERP datasets (Scharf &
Nestler, 2018). The factor variances and covariances are a
mixture of (co-)variances due to participants, scalp topogra-
phy, and condition effects. As a consequence, the fac-
tors are rescaled so that the total variance (instead of theTa
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participant-related variance only) is 1, explaining the rescal-
ing of the factor loadings. In addition, the factor covariance
is a function of the topographic overlap, the between-parti-
cipant correlation, and the conditional overlap (i.e., the
extent to which both factors are affected by the experimen-
tal condition). In our simulations, the topographic overlap
was the largest contribution, resulting in large positive
biases in the factor correlations. In conditions without topo-

graphic overlap, the factor correlation was underestimated
due to the increased relative impact of the negative condi-
tion effect overlap (δF1 < 0, δF2 > 0). Considering this, the
results are well in line with the literature that has shown
that factor rotations tend to underestimate cross-loadings
at the cost of inflated factor correlations when the cross-
loadings (here: temporal overlap) are high in the population
(Sass & Schmitt, 2010; Schmitt & Sass, 2011).
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Figure 3. Average factor loadings (F1 solid lines; F2 dashed lines) as a function of rotation technique (columns) and temporal overlap (rows) for
conditions with overlapping topographies and uncorrelated factors across participants. The population loadings (gray) are depicted as a reference
line. For the sake of comprehensibility, only selected relevant temporal overlap conditions are displayed. Figure available from the OSF (https://
osf.io/zmtcg/) under a CC-BY 4.0 license. The depicted conditions were representative of the general results pattern. Nevertheless, supplementary
figures for the remaining conditions are available from the OSF. A version containing the complete information is available in ESM 2.
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Figure 4. Average factor loadings (F1 solid lines; F2 dashed lines) as a function of rotation technique (columns) and temporal overlap (rows) for
conditions with non-overlapping topographies and uncorrelated factors across participants. The population loadings (gray) are depicted as a
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This interpretation is also in line with the occurrence of
conflated solutions in our simulations. Taking a closer look
at the specific simulation conditions that suffered from this
artifact, one can see that conflated solutions were more
likely to occur when the total factor correlation was high.
For instance, in conditions with topographic overlap and
high temporal overlap, where Promax yielded conflated
solutions, the estimated factor correlation was between
0.70 and 0.95 for rotation techniques that did not conflate
the factors. It is a known property of some rotation methods
that they are prone to such conflated solutions when both
the factor correlations and the cross-loadings are high (Sch-
mitt & Sass, 2011).

The differential susceptibility to conflated factors and
rotation biases between factor rotation techniques can be
explained when considering the foundations of each tech-
nique.3 Promax is a two-step rotation where Varimax rota-
tion is applied in a first step, the Varimax-rotated loadings
are raised to the power κ (bringing near-zero loadings closer
to zero) and subjected to a second (oblique) target rotation.
As an orthogonal rotation the initial Varimax rotation is less
prone to biases due to temporal overlap (e.g., Scharf & Nes-
tler, 2019a) as long as the factors are not completely over-
lapping (Beauducel, 2018; Wood & McCarthy, 1984). This
is presumably the main reason for the superior perfor-
mance of Promax in previous simulations (Dien, 2010a).
However, this advantage disappears once factors are highly
correlated and temporally overlapping to an extent where
the Varimax criterion prefers a conflated solution. Indeed,
supplementary simulations suggested that conflated solu-
tions for Varimax rotation occur in the same conditions as
for Promax rotation.

In general, rotation criteria are more susceptible to con-
flated solutions, the more they focus on minimizing variable
complexity (see Kaiser, 1958, for a similar argument). For
instance, Quartimax which minimizes only variable com-
plexity (i.e., k = 0) yielded conflated solutions whereas Par-
simax that considers factor complexity as well (i.e., k > 0)
did not. However, a too strong focus on the minimization
of factor complexity yields rotation criteria that are unable
to recover perfect simple structure (e.g., Scharf & Nestler,
2019b; Schmitt & Sass, 2011). This reasoning is applicable
outside the CF-family as well: The Geomin criterion mini-
mizes the variable-wise geometric mean of the squared fac-
tor loadings (Equation 4). We found that an increased
rotation parameter � of 0.5 leads to better tolerance of
cross-loadings. This is in line with the notion that a larger
value of � decreases the relative impact of each small load-
ing on the overall criterion. Hence, the emphasis on
variable complexity is reduced and with it the risk of con-

flated factors. Finally, the fact that Component loss rotation
(which aims for a factor loading matrix with as many zero
elements irrespective of their distribution across variables
or factor) was able to recover a wider range of factor load-
ings patterns further supports the notion that the distinction
between variable and factor complexity is not beneficial
when the complexity of the factor loading pattern cannot
be anticipated – as in the case of ERP data.

For the choice of themost appropriate rotation technique,
it is important to consider whether conflated factor solutions
are desirable in a specific research context or not. Here, we
generated data from a population with two factors that are
clearly differentiable from a substantive point of view
because they are characterized opposing condition effects
(and different topographies in half of the conditions). A con-
flation of the factors results in a single factor with a condi-
tion effect that is a mixture of the condition effects from
both factors. In the most extreme case, the conflated factor
may yield a zero condition effect because both effects cancel
out. Therefore, conflated solutions are clearly undesirable
for our simulated data. Nevertheless, there may be situa-
tions in which a conflated solution is actually more appropri-
ate. For instance, an experimental manipulation may result
both in amplitude and latency changes and, when the
latency shift between conditions is strong enough, EFA
may yield two separate factors (one for each condition). This
implies that these factors should be highly correlated both
due to between-participant and topographic similarity as
they actually reflect the same underlying factor. In such
cases, a conflated solution may actually be desirable
because it resembles the underlying reality more closely.

The present results indicate that parallel analysis may be
able to differentiate between these two cases. In the condi-
tion which comes closest to the case of latency shift (i.e.,
extreme topographic overlap and positive factor correla-
tion), a substantial proportion of samples would have
yielded a one factor solution. The fact that the data gener-
ating two-factor model was still preferred is arguably due to
the negative contribution of the condition effects to the
overall factor covariance (see also Scharf & Nestler,
2018). We tested this interpretation by replicating the sim-
ulation condition but without experimental condition
effects, that is, the condition effects did not reduce the
overall factor correlation. Indeed, for an increased propor-
tion of 40% of all samples parallel analysis indicated a
one-factor solution in this condition. Although more sys-
tematic and direct investigations of the factor extraction
step are necessary to settle this issue, we tend to conclude
that conflated factors are undesirable solutions of the factor
rotation step in most cases.

3 We also tested the alternative interpretation that the performance of Promax differs because it is not estimated by gradient projection which is
prone to local optima. However, the same results occur when using gradient projection to estimate the initial Varimax.
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Taken together, the present results are well in line with
previous investigations of temporal EFA for ERP data
(Beauducel, 2018; Dien, 1998, 2010a; Dien et al., 2005;
Möcks & Verleger, 1986; Scharf & Nestler, 2018; Wood &
McCarthy, 1984). We confirmed that the best performing
simple structure rotation techniques work very well across
many plausible ERP factor patterns but also that they yield
substantial biases when the temporal overlap is extreme.
However, there are application scenarios in which even
more extreme temporal overlap should be expected, for
instance, slow-wave potentials that may overlap with all
other factors of interest (see Beauducel, 2018; Möcks &
Verleger, 1986, for some examples). Therefore, further
research is needed to develop rotation techniques that are
able to recover both highly overlapping and non-overlap-
ping ERP factors – possibly challenging the predominance
of the simple structure concept for ERP data. In the follow-
ing, we outline some efforts that could be made in that
direction.

Recently, the suggestion has been made that factor rota-
tion criteria for ERP data can be improved by utilizing addi-
tional information that is unique for ERP data. Specifically,
knowledge about plausible time courses (Beauducel, 2018)
or the allocation of known experimental condition effects
(Beauducel & Leue, 2015) can be useful for developing
ERP-specific rotation criteria. We think that a comparison
of these techniques with simple structure rotation would
have gone beyond the scope of the present paper. However,
future studies should include these approaches to evaluate
whether they perform well under sufficiently general condi-
tions to be useful for real-data applications.

An important limitation of ERP-specific rotation criteria
is that they require sufficient and, above all, valid knowl-
edge about plausible time courses (or condition effects).
In the absence of such knowledge, the investigated Compo-
nent loss rotation seems to be a promising alternative. We
think that its good all-round performance is due to the
inherent sparsity assumption. Like simple structure rota-
tion, it is assumed that many loadings are zero, but no
assumptions are made about the specific pattern of zero
loadings (e.g., that a least one factor has zero loadings on
each sampling point). In this sense, simple structure may
be regarded as a special case of sparsity (Yamamoto, Hir-
ose, & Nagata, 2017), and sparse estimation of factor mod-
els is a suitable alternative to simple structure rotation
(Scharf & Nestler, 2019c; Trendafilov, 2014). The assump-
tion that many loadings are zero is reasonable for temporal
ERP factors (see also Dien, 2010a), but pattern assumptions
are not necessarily justified (due to temporal overlap).
Despite the promising results, further research should
investigate the performance of sparsity-based approaches
for real ERP datasets and for more challenging factor pat-
terns such as overlapping slow-wave potentials.

Apart from the question which rotation technique should
be applied in temporal EFA for ERP data, the present
results are also relevant when applying exploratory struc-
tural equation modeling (ESEM) to ERP data (Scharf &
Nestler, 2019a) in which factor rotation is an essential step
as well. Rotation biases due to temporal overlap will also
occur for ESEM factors because the very same rotation
techniques are used. However, a crucial difference between
EFA and ESEM is that ESEM properly acknowledges the
topographic variance in its structural model. As a conse-
quence, ESEM reduces the problem of very high factor cor-
relations that resulted in conflated solutions. Therefore,
ESEM might make the application to ERP data slightly less
challenging for common rotation techniques. In this sense,
the present results may also be interpreted as an additional
argument in favor of approaches such as ESEM that are
able to separate topographic, condition-related, and
between-participant (co-)variance.

Finally, we want to acknowledge some limitations of the
present study. First, we simulated an unrealistically simplis-
tic factor pattern with only two factors. Realistic applica-
tions are characterized by solutions with many more
factors (e.g., 12). Whereas this simplification enabled us to
focus on the core principles that underlie the rotation biases
in temporal EFA for ERP data, it might have concealed dif-
ferential behavior of rotation techniques as a function of the
number of factors. Second, the conditions with topographic
overlap were characterized by the most extreme topo-
graphic overlap possible. That is, with respect to topo-
graphic overlap, we studied the worst-case scenario. This
might have exaggerated some of the biases that we
observed. However, it is impossible to have more than
two topographically non-overlapping factors in temporal
EFA for ERP data (Dien, 2010a). Given this and the typi-
cally high number of factors, it is reasonable to assume sub-
stantial topographic overlap – rendering our simulation
conditions more realistic than they might seem at first sight.

Third, we did not systematically investigate the influence
of normalization on the rotated solutions. Previous findings
indicate that it may be beneficial to normalize the unrotated
loadings during rotation (Dien et al., 2005). In a supple-
mentary simulation, we did not observe such benefits but
our simulated factors did not differ very much in their over-
all variance. Therefore, our results are not conclusive with
respect to the question whether normalization is generally
beneficial for the rotated solutions when EFA is applied
to ERP data. Lastly, we always extracted the correct num-
ber of factors. For real data applications, this might not
be the case. For most of the investigated conditions, the
correct number of factors would have been extracted. How-
ever, especially in conditions with perfect temporal overlap,
fewer factors would be extracted than we assumed. The
determinants of correct factor extraction in temporal EFA
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for ERP data remain an open question and the present
results underline the need for further investigations (see
also Dien, 2006; Dien et al., 2005; Kayser & Tenke, 2003).

Conclusion

In the present study, we compared the performance of a
variety of oblique simple structure rotation techniques
and Component loss rotation for a wide range of conditions
typical of EFA applications to ERP data. The results con-
firmed that the best-performing simple structure rotation
techniques work very well across many plausible ERP factor
patterns but also that they yield substantial biases when the
temporal overlap is extreme. Geomin rotation with a rota-
tion parameter of 0.5 and Promax were the best performing
simple structure rotation techniques but Component loss
rotation showed the best all-round properties of all investi-
gated rotation techniques. We conclude that sparse (or reg-
ularized) factor models should be considered as an
alternative to simple structure rotation for ERP data.

Electronic Supplementary Material

The electronic supplementary material is available with
the online version of the article at https://doi.org/
10.1027/1614-2241/a000175
ESM 1. Table S1 provides the means of the factor scores
in the population for both factors separately for all elec-
trodes and conditions.
ESM 2. This Figure provides the same average factor
loadings estimates as presented in Figure 3 but optimized
for digital viewing. That is, the figure provides more
detailed information. The Figure provides the averaged
factor loading estimates for the correlated conditions.
ESM 3. This Figure provides the same average factor
loadings estimates as presented in Figure 4 but optimized
for digital viewing. That is, the figure provides more
detailed information. The Figure provides the averaged
factor loading estimates for the correlated conditions.
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