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Abstract: Common model fit indices behave poorly in structural equation models for experience sampling data which typically contain many
manifest variables. In this article, we propose a block-wise fit assessment for large models as an alternative. The entire model is estimated
jointly, and block-wise versions of common fit indices are then determined from smaller blocks of the variance-covariance matrix using
simulated degrees of freedom. In a first simulation study, we show that block-wise fit indices, contrary to global fit indices, correctly identify
correctly specified latent state-trait models with 49 occasions and N = 200. In a second simulation, we find that block-wise fit indices cannot
identify misspecification purely between days but correctly rejects other misspecified models. In some cases, the block-wise fit is superior in
judging the strength of the misspecification. Lastly, we discuss the practical use of block-wise fit evaluation and its limitations.
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In psychological research, we often measure people’s affect,
behavior or cognition in different situations. Changes in
measures from one occasion to another may reflect a
change of the attribute in question, the different situations
in which it was assessed, or be due to measurement error.
With several measurement occasions, latent state-trait
theory and its revised version (LST-R theory; Steyer et al.,
1999, 2015) allows researchers to distinguish between
occasion-specific (state residual) and stable (trait) influ-
ences on the observed attribute. State residuals reflect the
influence of a specific situation and the person-situation
interaction on the observed variable. A trait is an attribute
of the person at the time of measurement (Steyer et al.,
2015).

When we research states that fluctuate over short peri-
ods, experience sampling (ES) studies can be useful. In
ES studies, participants respond about their behavior or
thoughts several times a day during one or more weeks
(Mehl et al., 2011), leading to large datasets. LST-R theory
can also be applied to ES datasets. Eid et al. (2012) give an
overview of models for ES data. These models include
autoregressive effects to account for short time lags and
can be defined in the LST-R framework (Eid et al., 2017).

There are multiple other approaches to assessing the
(in)stability of constructs with structural equation models,
for example, the single indicator STARTS model (Kenny
& Zautra, 1995, 2001), the integrated state-trait model
(Hamaker et al., 2007), the random intercept cross-lagged

panel model (RI-CLPM; Hamaker et al., 2015), or multilevel
approaches such as dynamic structural equation models
(DSEM; e.g., Asparouhov et al., 2018; Zhang et al., 2008).

LST-R Theory

In this article, we focus on LST-R models for ES data.
LST-R theory is an extension of classical test theory
(CTT) for longitudinal data. While CTT can differentiate
between person (“trait”) effects and measurement error,
LST-R theory also considers the influences of the situation
and person-situation interaction. A revised version (LST-R
theory; Steyer et al., 2015) recognizes that a person changes
with experience and thus that traits can change over time.

Each observed variable (indicator) is denoted as Yit,
where i (i = 1, 2, 3,. . .) stands for the indicator and t (t =
1, 2, 3,. . .) for the time point. Each indicator can be decom-
posed into a latent state variable (τit) and measurement
error. The latent state variables are defined as the expected
value of Yit given the person-at-time-t and the situation-at-
time-t. The measurement error variable (ϵit) is the differ-
ence between Yit and τit. The latent state variable is further
decomposed into the latent trait variable (ξit) and the state
residual variable (ζit). The latent trait variable is defined as
the expected value of Yit given the person-at-time-t. The
state residual variable is the difference between the latent
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state and the latent trait variables. Overall, we obtain the
following equation:

Yit ¼ ξit þ ζit þ ϵit: ð1Þ
The latent trait variable represents the person-at-time-
t-specific influence on the measurement. Since the person
can change with experience, we could also call the trait
variable an occasion-specific disposition. The state residual
variable represents the influences of the situation and
person-situation interaction.

Based on this decomposition, LST-R theory defines
three important coefficients for each indicator. Consistency
is the proportion of variance due to the trait variable:
Con(Yit) = Var(ξit)/Var(Yit). Occasion-specificity is the
proportion of variance due to the state residual variable:
Spe(Yit) = Var(ζit)/Var(Yit). Reliability is the sum of both, or in
other words, it is the proportion of variance not due to unsys-
tematic measurement error: Rel(Yit) = 1 � Var(ϵit)/Var(Yit).

With these definitions alone, it is not yet possible to esti-
mate an LST-R model. Additional assumptions about the
equivalence of latent state and trait variables need to be
made to obtain an identified model. For a model with a sin-
gle trait variable, the most restrictive equivalence assump-
tions (state- and trait-equivalence), assume that the state
and trait variables are measured on the same scale with
the same intercept, meaning that the intercept is zero and
factor loadings are fixed to one. The model equation with
these assumptions is Yit = θ + ζt + ϵit. There is one single trait
variable θ for all occasions and several occasion-specific
state residual variables ζt, as can be seen in the path model
in Figure 1A. For a detailed overview of the definitions and
additional assumptions in LST-R theory, see Steyer and col-
leagues (2015).

Models With Autoregressive Effects

In ES studies, time intervals between measurements are
very short. Measures taken close together in time are more
similar than measures taken further apart, and autoregres-
sive effects are common in ES data (Bolger & Laurenceau,
2013). Eid and colleagues (2012) therefore propose differ-
ent LST models with autoregression, which can be defined
in the framework of LST-R theory (Eid et al., 2017). Autore-
gressive paths are added at the level of occasion-specific
residual variables. The latent state variable is decomposed
into the latent trait variable and an occasion factor (OCCij).
Autoregressive paths are added between these occasion
factors. The OCCij variables have a residual, which is the
state residual variable ζij. This means that the occasion fac-
tors are the current state residual plus a linear combination
of all previous state residuals. The first occasion factor is
identical to the first state residual. A model with autoregres-
sion is depicted in Figure 1B. It is also possible to add

autoregressive paths between the latent states, but for most
short-term longitudinal studies, autoregression between
occasion-specific residual variables seems more suitable
(Stadtbäumer et al., 2021).

Indicator- and Day-Specific Traits

While the models described above included a single trait,
the constructs explored in ES research are often more
dynamic and a single trait across the entire measurement
period is not always realistic. Eid and colleagues (2012)
describe models with indicator- and day-specific traits. If
the indicators in the model are not homogeneous (e.g., pos-
itive and negative valence) indicator-specific traits can cap-
ture the specific components which are not shared. Given
that the indicators are supposed to measure the same con-
struct, indicator-specific traits should correlate highly. Indi-
cator-specific LST-R models can also include indicator-
specific equivalence assumptions, meaning that we assume
state- and trait-equivalence separately for the manifest vari-
ables of each indicator. When the construct in question is
stable within days but less stable across the entire measure-
ment period, it is also possible to include day-specific traits.
The day-specific trait variables can capture within-day sta-
bility, while the correlation between traits gives an indica-
tion of between-day stability. Day-specific models can
also have day-specific state- and trait-equivalence assump-
tions, meaning that equivalence is assumed within each
day. Day-specific and indicator-specific traits can also be
combined. Some path models of indicator-specific and
day-specific models can be found in the Electronic Supple-
mentary Material 1 (ESM 1, Figure E1), which illustrates the
design of the simulation study.

Model Fit Evaluation

In LST-R models for ES data, it is difficult to estimate
model fit. Fit indices are less reliable for models with many
manifest variables: they show inflated w2-values with rejec-
tion rates of up to 100% for correctly specified models
(Moshagen, 2012). This so-called model size effect is largely
influenced by the number of manifest variables (p) and the
sample size (N) (Shi et al., 2019). The number of free
parameters (q) has a smaller influence. Moshagen (2012)
found no influence of q on inflated Type I error rates, but
Shi and colleagues (2019) found such an effect. However,
with a large number of manifest variables (p � 60)
Type I error rates are dramatically inflated, independent
of q and even with very large sample sizes (N = 2,000)
(Shi et al., 2019). The model size effect disappears asymp-
totically (i.e., when N approaches infinity).
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There are different w2-corrections to counteract the
model size effect, such as the ones by Bartlett (1950), Swain
(1975), and Yuan and colleagues (2015). A comparison by
Shi and colleagues (2018) showed that the correction by
Yuan et al. (2015) performs best and results in acceptable
Type I error rates, except with very large p (� 90) and small
N (= 200). Yuan and colleagues (2015) multiply the empir-
ical maximum likelihood w2 test statistic with the correction
factor e = [N � (2.381 + 0.361p + 0.006q)]/(N � 1).

Common fit indices such as Comparative Fit Index (CFI),
Tucker-Lewis Index (TLI), and Root Mean Square Error of
Approximation (RMSEA) are based on the w2-value and are
also biased in larger models (Kenny & McCoach, 2003; Shi
et al., 2019). In the case of misspecified dimensionality, CFI
and TLI worsen with more manifest variables but improve
when the data-generating model includes residual correla-
tions which are omitted in the analysis. RMSEA values
decrease with more manifest variables (Kenny & McCoach,
2003; Savalei, 2012; Shi et al., 2019). Guidelines for inter-
preting these values are based on studies with smaller mod-
els (e.g., 15manifest variables in the study by Hu & Bentler,
1999). For models with ES data, relying on these fit indices
may lead to the incorrect rejection of acceptable models.

Local Fit Evaluation

The bias of fit indices is associated with model size, so a
more local evaluation of smaller model elements seems
intuitive. Maydeu-Olivares and Shi (2017) suggest that the
local source of misspecification can be visually detected
through areas (for misspecified trait dimensionality) or rows
(for misspecified secondary loadings) of high residual corre-
lations. However, with two items measured at only 14 time
points, a residual correlation matrix has 784 entries, making

it difficult to detect meaningful patterns. The number of
large residual correlations also increases with matrix size.
If there are no obvious patterns, this approach may not tell
us if model rejection is due to model size or legitimate
model misfit and may not be helpful for judging the fit of
ES models.

Another approach to local fit evaluation is testing individ-
ual implications of the proposed model. Thoemmes and
colleagues (2018) suggest conditional independence test
for implications of the model structure and tetrad tests if
latent variables are involved. The number of conditional
independence constraints equals the degrees of freedom
(df), and the number of tetrad constraints is large even with
few latent variables. For models with ES data, there will be
thousands of tests, making it difficult to derive what they
imply for the model structure.

Recently, Rosseel and Loh (2021) presented the Struc-
tural After Measurement (SAM) framework, where param-
eters of the measurement part are estimated first, followed
by the parameters of the structural part. The measurement
part can be estimated as (1) a single measurement block
containing all latent variables, (2) separate measurement
blocks for each latent variable, or (3) several measurement
blocks which can contain more than one latent variable.
There may not be equality constraints, cross-loadings, or
correlated residuals between indicators in different blocks.
Fit indices are derived for each measurement block and
the structural part. A special case of SAM is step-wise factor
score regression, where the measurement models of each
latent variable are estimated independently, and their rela-
tionships are modeled with factor scores (Devlieger, 2019).
For ES LST-R models, measurement models with two or
three indicators are too small for factor score regression
or option 2 of the SAM framework, and option 3 does not
work for models with a single trait, indicator-specific traits,

(A) (B) Figure 1. Path models of two LST-R
single-trait models. (A) LST-R model
with state residuals on the left side and
a single trait on the right side. (B) LST-R
model with autoregression.
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measurement invariance over time or other equivalence
assumptions. The first option, however, is not recom-
mended and offers little benefit over SEM.

While local fit assessment has typically been recom-
mended as a follow-up analysis, Rosseel and Loh (2021)
show that it can also be useful as an alternative to global
fit evaluation. Unfortunately, for the evaluation of most
ES LST-R models, the SAM framework provides little added
benefit. In this article, we will thus show that a new
approach to local fit assessment can be a viable alternative
to global evaluation for ES LST-R models.

We propose an approach where the full variance-covar-
iance matrix is first estimated for the global model based
on all postulated relationships. Then, local versions of fit
indices are determined for each day (or other blocks) based
on the global variance-covariance matrix using simulated
block-wise df. This approach can take all kinds of relation-
ships across measurement models and days into account
and provides familiar fit indices. We will first show how
local block-wise fit indices can be estimated. We then show
in two simulation studies under which conditions they pro-
vide a more reliable fit assessment than global fit measures
and discuss the implication of our results for the evaluation
of large SEMs.

Block-Wise Model Fit Indices

In the past decades, a variety of fit indices have been devel-
oped to examine how well a theoretical model is supported
by empirical data. Some of the most common indices are
the w2, CFI, TLI, and RMSEA. In this section, we explain
how these indices can be computed for blocks (e.g., days)
of LST-R models for ES data in three steps: (1) estimating
the overall model, (2) extracting blocks from Σ̂ and S, and
(3) calculating fit indices from these blocks.

First, the model including all latent constructs and postu-
lated relationships is specified and estimated with maxi-
mum likelihood, yielding a model implied variance-
covariance matrix Σ̂. In the second step, a number of sub-
stantively meaningful blocks is chosen, such as the days
in an ES study. All manifest variables are uniquely associ-
ated with one block, and all blocks contain the same num-
ber of manifest variables pk ¼ p

K, where p is the total
number of manifest variables and K is the number of
blocks. We use the subscript k for all block-specific param-
eters, with k = 1,. . ., K. Then, the (co)variances of the man-
ifest variables of each block are extracted from Σ̂ and S.
This results in K pk � pk model-implied (Σ̂k) and observed
(Sk) (co)variance matrices (i.e., Σ̂1 for block 1, etc.). The
block-wise matrices Σ̂k and Sk must be invertible so that
block-wise χ2k-values can be determined. In step three,

model fit indices are determined for each block based on
Σ̂k and Sk with the regular formulas adapted for block-wise
use.

This block-wise approach can be applied to large LST-R
or other longitudinal models, where we can identify a sub-
stantively meaningful number of blocks. The block-wise
approach allows for a day-specific evaluation of models that
include restrictions across days, such as a single trait or
measurement invariance over time.

Block-Wise w2

In a structural equation model, the w2-test evaluates the dis-
crepancy between Σ̂ and S, with the null hypothesis that Σ̂ is
identical to the (co)variances in the population from which
the sample is drawn. An insignificant w2 value at an α-level
of .05 is often used as an indicator of good fit. The w2-value
is the product of the fitting function and sample size. The
most common estimator to minimize the fitting function
is the maximum likelihood (Bollen, 1989). Adapted for
block-wise use, we get the formula:

χ2k ¼ log jΣ̂kj þ trðΣ̂�1
k SkÞ � log jSkj � pk

�
þð�xk � μ̂kÞTΣ̂�1

k ð�xk � μ̂kÞÞ � N � 1ð Þ; ð2Þ

where pk is the number of observed variables per block, �xk
the vector of sample means, and μ̂k the vector of model-
implied means, both for the items in block k. N is the sam-
ple size. Although the sample estimates for w2 and other
fit indices include N � 1 in the formulas, both lavaan
and MPlus use N instead. For the sake of consistency,
we therefore used N in the computations for the simula-
tion study. With large sample sizes, the w2-test yields sig-
nificant p-values even for models with a minor misfit. This
is one of the reasons which have inspired the develop-
ment of different fit indicators including RMSEA, CFI,
and TLI.

Block-Wise Degrees of Freedom

In order to test the null hypothesis and to calculate other fit
indices, we need the df. In SEM, df are the difference
between the number of empirical parameters (means,
variances, and covariances of the manifest variables) and
estimated parameters. All estimated parameters are
involved in computing the implied (co)variances in Σ̂. How-
ever, not all estimated parameters are uniquely associated
with only one block. Time-invariant factor loadings, or
the variance and mean of a single trait, affect the calcula-
tion of co(variances) in more than one Σ̂k matrix.
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Since it is unclear how estimated parameters can be
split among blocks, we suggest simulating block-wise dfk.
Under the null hypothesis, empirical w2 values follow a
w2-distribution with df = E(w2). Thus, we can approximate
the df by simulating many datasets from the true model
and computing the mean of the block-wise w2-valuesMðχ2kÞ.

Simulation of Block-Wise dfk
To test this behavior, we simulated data for 4 ES LST-R
models (single-trait and day-specific model with and with-
out autoregressive effect,with 7 occasions per day and 2 indi-
cators per occasion), differing numbers of days (1, 2, 7), and
sample sizes (200, 10,000). For each condition, 1,000 data-
sets were created and analyzed with the data-generating
model. Block-wise χ2k values were calculated for 2 or 7 blocks,
conferring to the number of days. We examined global df,
M(w2), and the distribution of the w2 values, as well as
block-wise Mðχ2kÞ and the distribution of all χ21, that is, the
w2 values of the first block.

Simulation results show that global M(w2) for 2 or 7 days
and N = 200 are overestimated, for example, the autore-
gressive model with day-specific traits for 7 days has df =
4,852, but M(w2) = 5,965.70. With N = 10,000, the w2 infla-
tion almost disappeared (for the same model: M(w2) =
4,867.79). For models with 1 day, M(w2) closely resembles
df (e.g., for autoregressive model with day-specific traits,
N = 200: df = 109, M(w2) = 112.62). We also computed
Kolmogorov-Smirnov (KS) distances, which express the
maximum difference on a scale from 0 to 1 between the
observed distribution of the w2-values and their theoretical
distribution with df degrees of freedom and checked which
proportion of simulated w2-values fall within each decile of
a w2-distribution with df = M(w2). Both approaches indicate
that the simulated values are w2-distributed with df =M(w2).
A table with all results is included in ESM 2.

Overall, the block-wise χ2k values are approximately
w2-distributed with df ¼ Mðχ2kÞ. Based on these results,
we recommend simulating datasets based on Σ̂ and the
model-implied means with the actual sample size, comput-
ing block-wise w2 values for all datasets with Formula 2 and
using Mðχ2kÞ as an approximation of block-wise dfk. This
approximation can then be used for the calculation of other
fit indices. As an alternative, one can directly simulate the
distribution of the test statistic and use its empirical distri-
bution to test for significance. However, in this case, the
other fit indices cannot be computed.

Block-Wise Absolute Fit Indices

Absolute fit indices such as the RMSEA can better be
understood as measures of misfit, where small values indi-
cate little misfit. The RMSEA is based on the w2 statistic but

corrects for model complexity. The block-wise version for
each block k can be calculated as follows:

RMSEAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0;

χ2k � df k
df k � N � 1ð Þ

� �s
: ð3Þ

Although fit indices were developed to judge the extent of
model (mis)fit, they are also affected by other influences
such as the strength of factor loadings (Heene et al.,
2011) or, as discussed before, the number of manifest vari-
ables. Common rules of thump should thus be used with
great caution, and several indices need to be taken into con-
sideration to judge model fit. According to Hu and Bentler
(1999), RMSEA values < .06 indicate good fit. Another
common rule of thumb is that RMSEA values � .05 indi-
cate close fit, and values � .08 indicate reasonable fit
(Browne & Cudeck, 1992). Another absolute fit index is
the SRMR. This fit index does not depend on the w2-test
statistic, but we provide information on block-wise SRMR
in ESM 1.

Block-Wise Incremental Fit Indices

Incremental fit indices (e.g., CFI and TLI; Bentler, 1990;
Tucker & Lewis, 1973) do not use the w2-statistic directly
but compare the proposed model to the worst possible
(null) model. The null model only includes variances for
the observed variables, but no relationships are modeled.
For block-wise CFI and TLI, the null model is computed
for each block based on the manifest variables from
the block in question, pk. The block-wise null model has
pk(pk � 1)/2 df, and a w2-value is estimated according to
Formula 2. The block-wise Bentler Comparative Fit Index
(CFIk) can then be calculated as follows (Shi et al., 2019):

CFIk ¼
max dk NullModelð Þ; 0ð Þ�max dk ProposedModelð Þ; 0ð Þ

max dk NullModelð Þ; 0ð Þ ;

ð4Þ
where d ¼ χ2k � df k for the null and proposed model. CFIk
can range between 0 and 1. The block-wise TLIk is calcu-
lated as follows:

TLIk ¼ χ2k=dfk NullModelð Þ � χ2k=dfk ProposedModelð Þ
χ2k=dfk NullModelð Þ � 1

:

ð5Þ

Since the TLI is not normed, TLI > 1 or negative values are
possible. For both CFI and TLI, values � .97 indicate a
good fit between model and data, but values between .95
and .97 are considered acceptable (Hu & Bentler, 1999;
Schermelleh-Engel et al., 2003).
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Simulation Studies

We have shown that common advice for judging model fit
is not suitable for models with many manifest variables
(e.g., Kenny & McCoach, 2003; Moshagen, 2012; Savalei,
2012; Shi et al., 2019) and have proposed block-wise evalu-
ation. In order to demonstrate that block-wise evaluation is
a viable alternative for models with many manifest vari-
ables, we conduct two simulation studies. We first simulate
correctly specified data for ES LST-R models and evaluate
the effect of model size and sample size on global and
block-wise fit indices. Here, we expect that global fit indices
will incorrectly reject models with more days and a smaller
sample size, which is common in ES studies. We expect that
block-wise fit indices can correctly identify these models. In
a second simulation study, we generate data for the same
ES LST-R models but with different misspecifications and
evaluate the effects of model size, sample size, and mis-
specification on global and block-wise fit. Block-wise fit
evaluation is based on (co)variances within each day, so
we expect that block-wise fit indices will correctly reject
models which are misspecified within days, but fail to
identify models which are misspecified purely between
days.

Study 1: Correctly Specified Models

Method
In the first simulation study, model fit is evaluated for two
different ES LST-R models, with varying model and sample
size. Overall, we have a 2 (models) � 2 (model size) �
2 (sample size) design. The analysis models are (1) an
autoregressive multistate–singletrait model, where a single
trait is assumed across all measurements, and (2) an autore-
gressive multistate–multitrait model with day-specific traits.
We included both models because the multistate–singletrait
model is most common in applications of LST(-R) theory,
but the model with day-specific traits is suitable for many
applications with ES data. We did not have different
hypotheses for these twomodels. The models include 2 ndi-
cators for each occasion and 7 occasions for each day.
LST-R models can include more indicators, but ES studies
typically include as few questions as possible to keep the
strain on participants low. Models with 2–3 indicators thus
seem realistic for ES LST-R models. Both models have
η-equivalent and θ-equivalent measures within each day.
This implies that all factor loadings are set to 1, all inter-
cepts are 0, and all (state) residual variances are equal
within each day (Var(ϵt) = Var(ϵu) and Var(ζt) = Var(ζu),
t 6¼ u). Autoregressive effects are restricted to be equal
between all occasion-specific factors. Parameters in the
data-generating population models were Var(ζt) = .3, Var
(θ(u)) = .3 for the trait in the single-trait model and all

day-specific trait variables θu in the day-specific traits
model, Var(ϵit) = .4, Cov(θu, θV, u 6¼ v) = 0.21 (correspond-
ing to a correlation of r = .7), M(θ(u)) = 2.2, and autoregres-
sive effects β = .1. This implies equal occasion-specificity
and consistency, with item reliabilities between .60 and
.61. These values are approximately based on an empirical
application with ratings of perceived conflict of interest in
social situations (Norget et al., 2021). The trait and state
residual variances are adjusted to be equal because many
constructs assessed in longitudinal studies have both stable
and occasion-specific aspects (Geiser, 2021). Please refer to
Figure E1 (ESM 1) for path models of the single-trait and the
day-specific traits model. Data was generated for models
with 2 or 7 days (i.e., 28 or 98 manifest variables) and
sample sizes of 200 or 1,000. Typical data situations in
ES studies include sample sizes around or smaller than
N = 200 and data collection on several days, often one or
two weeks. For each condition of the study, we estimate
global fit indices as well as block-wise fit indices for each
day. For comparison, we also simulated global df in the
same way as we described for the block-wise df and
computed all global fit indices using these simulated df.
Additionally, we computed the Yuan et al. (2015) corrected
w2-estimates to compare rejection rates and w2/df-ratios.

For each of the 8 conditions, 500 datasets were gener-
ated and analyzed. Block-wise (and global) df were simu-
lated for the first dataset in each condition. These
estimates were then used for all 500 datasets in the same
condition. In a test phase, we simulated the block-wise df
several times for the same condition and found very small
deviations between the estimates. The simulation study was
conducted in R (R Core Team, 2020; RStudio Team, 2019)
using the packages SimDesign (Chalmers & Adkins, 2020),
lavaan (Rosseel, 2012), lsttheory (Mayer, 2020), and MASS
(Venables & Ripley, 2002). We discuss w2-rejection rates at
α = .05, KS distances and mean CFI, TLI, and RMSEA
values for the different conditions and point out the most
important aspects of this visual analysis. Results are shown
in Figure 2 and Figures E2 and E3 (ESM 1).

Results
Therewere (almost) no differences between the twomodels.
We present the results for the day-specific model here and
provide results for the other model in Figure E2 (ESM 1).
We will refer to the global fit indices as implemented in
common SEM software as “global” w2, CFI, TLI, and
RMSEA. Estimates based on simulated global df are “simu-
lated global” values, and Yuan and colleagues (2015)
corrected values are “Yuan-corrected”.

w2-Rejection and Kolmogorov-Smirnov Distance
For correctly specified models, w2-rejection rates at α = .05
should be around 5%. As shown in Figure 2A, w2-rejection

Zeitschrift für Psychologie (2022), 230(1), 47–59 � 2022 The Author(s) Distributed as a Hogrefe OpenMind article
under the license CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0)

52 J. Norget & A. Mayer, Block-Wise Model Fit

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/2

15
1-

26
04

/a
00

04
82

 -
 M

on
da

y,
 A

pr
il 

29
, 2

02
4 

9:
05

:1
1 

PM
 -

 I
P 

A
dd

re
ss

:3
.1

46
.3

7.
35

 



rates for global evaluation, with globally simulated df, and
Yuan-corrected w2 for models with 2 days and N = 1,000
are close to the expected rejection rate. With smaller sam-
ple sizes and more days, global rejection rates increase up
to 100% for models with 7 days and N = 200. The KS dis-
tances (Figure 2B) show that the distribution of global, sim-
ulated global, and Yuan-corrected w2 values differs more
strongly from their theoretical distribution than block-wise
χ2k. Global w

2 values are most strongly overestimated. Again,
this difference is especially large for models with 7 days and
N = 200. Overall, global w2, as implemented in most soft-
ware, highly overestimates the test statistic and too often
rejects correctly specified models, especially in the most
likely data scenario in ES studies, while block-wise χ2k per-
forms much better.

Comparative Fit Index and Tucker-Lewis Index
For CFI and TLI most models yield estimates � .97, indi-
cating a good model fit. However, we can see in Figures
2C and 2D that global CFI and TLI indicate worse fit for
smaller samples (N = 200 vs. N = 1,000) and for larger
models (7 vs. 2 days). In the most likely data scenario in
ES studies (7 days and N = 200) global indices reject the
correctly specified model (CFI = .88, TLI = .88). However,
simulated global CFI and TLI, and block-wise CFIk and
TLIk correctly indicate a good fit in all cases.

Root Mean Square Error of Approximation
All types of RMSEA(k) correctly identify a good fit in all four
scenarios (see Figure 2E). For models with N = 1,000, glo-
bal, simulated global, and block-wise RMSEA(k)-values are
very small (.003–.006). For models with N = 200,
RMSEA(k) values are slightly higher, and global values indi-
cate worse fit than simulated global or block-wise values.
RMSEA indicates good fit in all scenarios, but global
RMSEA is noticeably worse for N = 200 and 7 days

(.034) compared to all other conditions. Block-wise
RMSEA(k) clearly indicates a better fit in this case. Simu-
lated global values indicate better fit in all scenarios. Since
all RMSEA(k) correctly indicate a good fit, block-wise evalu-
ation may offer less benefit over global evaluation in the
case of RMSEA compared to other fit indices. However,
block-wise and simulated global RMSEA(k) still correctly
indicate a better fit than global RMSEA.

Discussion
Overall, correctly specified models were correctly identified
by block-wise χ2k, CFIk, TLIk, and RMSEAk, but not always
by their global counterparts. Simulated global indices
behave similarly to block-wise indices. The biases in global
fit are in line with previous simulation studies (Kenny &
McCoach, 2003; Moshagen, 2012). Especially in the most
likely data scenario with experience sampling data, models
for 7 days (49 occasions), and sample sizes of N = 200,
block-wise fit evaluation seems to offer a good alternative
to global evaluation.

Study 2: Misspecified Models

Method
While Study 1 showed that block-wise fit correctly identifies
correctly specified models, it is also important to consider
under which conditions block-wise fit can correctly reject
misspecified models. Since block-wise fit is based on the
(co)variances of each block, we expect that misspecifica-
tions within blocks should be identified correctly, while
misspecifications purely between blocks should be unde-
tectable for block-wise fit indices. In Study 2, we generated
data with different misspecifications in a 2 (models) �
2 (model size) � 2 (sample size) � 6 (misspecification)
design. Analyzing ES LST-R models were the same as

(A) (B) (C) (D) (E)

Figure 2. Results of Study 1 for the day-specific model (single-trait figures are included in Figure E2 (ESM 1). (A) w2-rejection rates at α = .05;
(B) KS distance single-trait model; (C) CFI values; (D) TLI values; (E) RMSEA values.

�2022 The Author(s) Distributed as a Hogrefe OpenMind article
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described in Study 1: a single-trait and a day-specific model.
Again, we generated data for either 2 or 7 days, with sample
sizes of 200 or 1,000. Global CFI and TLI worsen with
more manifest variables and misspecified dimensionality,
but improve with omitted residual correlations (Shi et al.,
2019), so we included models with omitted residual corre-
lations between and within days, as well as structural mis-
specifications similar to those in Shi et al. (2019).
Pathmodels are provided in Figure E1 (ESM 1). The mis-
specified models include (1) small or (2) large residual cor-
relations between days, that is, both items measured on
occasion 1, 2, and so forth on each day are correlated with
the same item measured on the same occasion on other
days. Residual correlations are small (r = .15) or large (r =
.40); (3) small (r = .15) or (4) large (r = .40) residual corre-
lations within days, that is, the residuals of item 1 on all
occasions within the same day are correlated, and likewise
for item 2; (5) small or (6) large structural error, that is, each
trait is split into two indicator-specific traits in the popula-
tion model, with correlations of r = .90 (small error) or r
= .60 (larger error). Other population values are identical
to Study 1. We expected that block-wise fit would detect
the structural error and the omitted residual correlations
within days but not between days.

For the w2, we discuss rejection rates at α = .05 and pro-
vide further analysis for the ratio between w2 and df. w2/df
= 1 indicates perfect fit. For CFI, TLI, and RMSEA, we ana-
lyze their global, simulated global, and block-wise values
using analyses of variance (ANOVAs) with the respective
fit index as the outcome and the four predictors: (1) model
(single-trait/day-specific traits), (2) number of days (2/7),
(3) sample size (200/1,000), and (4) the type of the fit index
(global/simulated global/block-wise). All predictors are
coded as factors, and we use Type III sum of squares and
sum to zero contrasts. We used the R package car (Fox &
Weisberg, 2019) to fit the ANOVAs and the package effect-
size (Ben-Shachar et al., 2020) for effect sizes. Normal dis-
tribution of the residuals and variance homogeneity were
visually checked, and the assumptions weremet sufficiently.

Results
w2-Rejection Rates and w2/df Ratios
The w2-rejection rates at α = .05 are displayed in Figure 3A.
Colored figures can be found in Figures E4a–E4e (ESM 1).
Most models have rejection rates of around 100%. Block-
wise w2 cannot detect the omitted residual correlations
between days and incorrectly indicates perfect fit (i.e.,
rejection rates around 5%). For small misspecifications
and N = 200, block-wise, and to a lesser degree also simu-
lated global and Yuan-corrected χ2ðkÞ sometimes have rejec-
tion rates notably lower than 100%; global w2 for N = 200
and 2 days as well, but with higher rejection rates than the
other types.

The ANOVA for the w2/df ratio revealed substantial main
effects of the misspecification, F(5, 179,876) = 412,102, p <
.001, η2 = .26, and sample size, F(1, 179,876) = 952,053, p <
.001, η2 = .12, meaning that all w2/df ratios are for a large
part similarly affected by these two influences. Since we
are more interested in the differences between the types
of fit, we will focus on interaction effects with the type of
fit measure. A table with the complete ANOVA results is
included in Table E1 (ESM 1).

First, there is considerable two-way interaction between
the type of fit measure and the misspecification,
F(15, 179,876) = 105,156.1, p < .001, η2 = .20. Block-wise
χ2k=df k ratios are higher (i.e., indicate worse fit) than global,
simulated global, or Yuan-corrected ratios for models with
large structural misspecification and omitted residual corre-
lations within days. However, block-wise χ2k=df k ratios indi-
cate a perfect fit for the models with omitted residual
correlations between days.

Second, there is an interaction effect between type of fit
and sample size, F(3, 179,876) = 578,95.2, p < .001, η2 =
.02). Looking at the types of fit separately, the effect of sam-
ple size remains substantial for all, with lower ratios for N =
200 thanN = 1,000. The difference between sample sizes is
larger for block-wise ratios (M1000 � M200 = 3.48) than for
global (M1000 � M200 = 1.72), simulated global (M1000 �
M200 = 1.84) and Yuan-corrected (M1000 � M200 = 1.84)
ratios.

Furthermore, there is a 3-way interaction between type of
fit, misspecification, and sample size, F(15, 179,876) =
58,386.4, p < .001, η2 = 0.11. Figure 3B shows that for
block-wise χ2k=dfk, and to a lesser extend for global, simu-
lated global, and Yuan-corrected ratios, the difference
between N = 200 and N = 1,000 is larger with strongly mis-
specified models compared to their less strongly misspeci-
fied counterparts.

Contrary to our expectations, there was no noteworthy
interaction between the type of fit and the number of days,
F(3, 179,876) = 20,434.2, p < .001, η2 = .008, or main effect
of the number of days, F(1, 179,876) = 107,115.8, p < .001,
η2 = .01.

Comparative Fit Index and Tucker-Lewis Index
The results for CFI and TLI barely differ, and results are
reported together. A figure with the TLI results is included
in Figure E4d (ESM 1). Most effects are significant in the
ANOVAs, and we focus on those with notable effect sizes.
All main effects, except for the effect of the model (sin-
gle-trait vs. day-specific), are noteworthy and interact with
the type of fit. We will focus on these interactions here since
we are mostly interested in how global and block-wise fit
are differently affected by other influences. Full results
are included in Tables E2 and E3 (ESM 1).
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Most notably, there is a substantial interaction between
the misspecification and type of fit (CFI: F(10, 155,903) =
36,904.1, p < .001, η2 = .13; TLI: F(10, 155,903) =
38,277.6, p < .001, η2 = .11). This effect is largely due to
the models with omitted residual correlations between
days. Here, block-wise CFIk and TLIk indicate perfect fit,
while global and simulated global CFI and TLI can identify
the misspecification.

The number of days also interact with the type of fit (CFI:
F(2, 155,903) = 42,835.7, p < .001, η2 = .03; TLI: F(2,
155,903) = 72,257.6, p < .001, η2 = .04). Global CFI and
TLI values are lower for models with 7 than 2 days (CFI:
t(23,394) = 67.04, p < .001, d = .87; TLI: t(22,675) =
77.21, p < .001, d = 1.00), to a lesser extend this is also true
for simulated global indices (CFI: t(23,783) = 24.44, p <
.001, d = .32; TLI: t(23,666) = 24.58, p < .001, d = .32)
but for block-wise CFIk and TLIk there is no notable differ-
ence between 2 and 7 days (CFI: t(38,858) = 0.60, p = .55;
TLI: t(38,741) = 0.03, p = .98).

There is a smaller interaction between the sample size
and type of fit (CFI: F(2, 155,903) = 19,282.2, p < .001, η2

= .01; TLI: F(2, 155,903) = 33,428.6, p < .001, η2 = .02).
Block-wise CFIk and TLIk are barely affected by sample size

(CFIk: t(107,980) = �2.66, p = .008, d = �0.02; TLIk:
t(107,980) = 4.07, p < .001, d = 0.02), and the effect on
simulated global indices is also small (CFI: t(23,939) =
6.63, p < .001, d = 0.09; TLI: t(23,326) = 18.45, p < .001,
d = 0.24). Here, models with N = 200 fit better than with
N = 1,000. Global CFI and TLI are generally worse for
smaller samples (CFI: t(23,739) = �40.2, p < .001, d =
�0.52) TLI: t(23,611) = �40.2, p < .001, d = �0.52).

Type of fit also interacts with number of days and mis-
specification (CFI: F(10, 155,903) = 6,071.9, p < .001,
η2 = .02; TLI: F(10, 155,903) = 7,123.1, p < .001, η2 = .02).
The interaction between days and misspecification remains
noteworthy for global (CFI: F(5, 23,988) = 1,965.8, p < .001,
η2 = .06), and simulated global (CFI: F(5, 23,988) = 6,697.9,
p < .001, η2 = .09) but not for block-wise fit (CFI:
F(5, 107,988) = 3.8175, p = 002, η2 < .001). Figure 3C shows
that especially for models with omitted residual correlations
between days, global and simulated global CFI and TLI for
7 days (circle and diamond shape) is smaller than for 2 days
(square and triangle). This difference is smaller for other
misspecifications.

Another interesting three-way interaction is between
the type of fit, number of days, and sample size (CFI:

(A) (B)

(C) (D)

Figure 3. Overview of results of Study 2 for each fit index. There are six misspecifications on the x-axis. Between(S): omitted residuals correlations
between days (r = .15); Between(L): likewise but with r = .40; Within(S): omitted residual correlations within days (r = .15); Within(L): likewise but
with r = .40, Structural(S): data is generated with correlated indicatorspecific traits (r = .90); Structural(L): likewise but with r = .60. (A) w2-rejection
rates at α = .05; (B) w2/df ratios; (C) CFI values (TLI values look almost identical); (D) RMSEA.
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F(1, 155,903) = 13,693.5, p < .001, η2 = .01; TLI: F(2,
155,903) = 21,879.2, p < .001, η2 = .01). This effect can
easily be understood when we look at Figure 3C: For N =
200 and 7 days the global values (i.e., medium-gray dia-
mond) are systematically lower than global and block-wise
values for other combinations of the three predictors.

Root Mean Square Error of Approximation
Most effects on the RMSEA are statistically significant, and
we only discuss those with notable effect sizes. Complete
results are included in Table E4 (ESM 1). In terms of main
effects, the misspecification accounts for the majority of
variance in all RMSEA(k) values, F(5, 155,903) =
192,939.9, p < .001, η2 = .53, and there is a small main
effect of the number of days, F(1, 155,903) = 27,321.8, p <
.001, η2 = .01.

Again, the strongest interaction is between the type of fit
and misspecification, F(10, 155,903) = 53,426.9, p < .001, η2

= .29. Figure 3D shows that block-wise RMSEAk generally
indicates worse fit than global and simulated global
RMSEA, except in the case of omitted residual correlation
between days, which cannot be detected by block-wise fit.

Additionally, there is an interaction between type of fit,
misspecification, and the number of days, F(10, 155,903)
= 31,80.7, p < .001, η2 = .02. The interaction between mis-
specification and number of days remains notable for global
RMSEA, F(5, 23,988) = 6,241, p < .001, η2 = .14, and simu-
lated global RMSEA, F(5, 23,988) = 11,129, p < .001, η2 =
.12, but there is no interaction for block-wise RMSEAk,
F(5, 107,988) = 2.06, p = .67. A look at the medium- and
light-gray shapes in Figure 3D reveals that (simulated)
global RMSEA indicates better fit for models with 7 than
2 days in the case of omitted residual correlations within
days or large structural misspecification. The figure also
shows that global and simulated RMSEA tend to assess
strongly misspecified models with 7 days as acceptable,
while block-wise fit can identify them as fitting badly.

There is also a small interaction effect of the type of fit
with number of days, F(1, 155,903) = 11,240.8, p < .001, η2

= .01. While the RMSEA values with 7 days are lower than
with 2 day for global, t(19,600) = 32.44, p < .001, d =
0.42, and simulated global RMSEA, t(19,234) = 58.15, p <
.001, d = 0.75, there is no difference between the number
of days for block-wise RMSEAk, t(38,839) = �0.32, p = .75.

Discussion
In general, all fit types indicate a less-than-perfect fit for
misspecified models and stronger misfit for more strongly
misspecified models. As expected, block-wise fit cannot
identify the misspecification between blocks because block-
wise fit indices are based on the (implied and observed) (co)-
variances of items associated with the same block.

In line with previous research (Kenny & McCoach, 2003;
Moshagen, 2012), global w2 is strongly affected by sample

size. The same remains true for block-wise χ2k, w
2 evaluation

with simulated df and Yuan et al. (2015) corrected w2.
Contrary to the correctly specified models, number of days
(and thus number of manifest variables) does not affect the
w2-tests for misspecified models. This could be due to the
fact that the number of misspecified covariances also
increases with model size.

CFI and TLI behave practically identical in our simula-
tion study. Globally, they are sensitive to the number of
days in the model, to a lesser extend also when they are
estimated globally with simulated df. Their block-wise
counterparts are not affected by the number of days. Regu-
lar global CFI and TLI indicate worse fit for all models with
7 days and N = 200, which is a likely ES data scenario.
Block-wise CFIk and TLIk, and to a lesser extend global
CFI and TLI with simulated df, generally indicate better
fit than regular global indices. Contrary to Kenny and
McCoach (2003) and Shi and colleagues (2019), global
CFI and TLI also worsened with more days for models with
omitted residual correlations. In previous studies, the num-
ber of misspecified covariances remained stable with more
manifest variables in the model, and the proportion of mis-
specified covariances decreased with model size. In our
study, the number of misspecified covariances also
increased with model size, explaining our different results.
In fact, for the model with omitted residual correlations
within days, the proportion of misspecified covariances is
larger for 2 days than 7 days, but CFI and TLI indicate a
worse fit for 7 days. This demonstrates that these global
indices are indeed strongly affected by the number of man-
ifest variables.

Global RMSEA and global RMSEA based on simulated
df indicate a slightly better fit for models with more days
(i.e., more manifest variables), while the number of days
does not affect block-wise RMSEAk. Especially in the case
of strongly misspecified models for 7 days, global RMSEA
would still let us erroneously conclude that these models
are acceptable, while block-wise evaluation can identify
them as fitting badly. Block-wise RMSEAk generally indi-
cates a worse fit than both global indices, which is desirable
in misspecified models. The behavior of global RMSEA is
largely in line with previous research (Kenny & McCoach,
2003; Savalei, 2012; Shi et al., 2019).

Global Discussion

In this article, we introduced block-wise model fit evalua-
tion for LST-R models with experience sampling data. We
performed two simulation studies to compare block-wise
fit evaluation to traditional global evaluation. We also
included Yuan and colleagues (2015) corrected w2 estimates
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and global fit indices derived with simulated degrees of
freedom for comparison. In Study 1, we investigated if the
different fit indices properly identify correctly specified
models. Results show that traditional global fit evaluation
too often leads to the rejection of correctly specified mod-
els, especially with realistic sample and model sizes in ES
studies. Block-wise fit evaluation, global fit derived from
simulated df, and Yuan et al. (2015) corrected w2 correctly
identified that these models fit well.

In the second study, we investigated under which condi-
tions block-wise fit indices correctly reject misspecifiedmod-
els. As expected, if models are misspecified purely between
days, block-wise fit cannot identify the misfit. Furthermore,
traditional global CFI and TLI generally indicate a worse
fit for the most realistic ES data scenario (7 days and N =
200) compared to other models and sample sizes. Block-
wise and global indices with simulated df do not share this
bias. Block-wise RMSEAk can more often identify (strongly)
misspecified models than both types of global RMSEA.

Practical Usage

Based on the simulation results, we recommend using
block-wise fit indices for LST models with many measure-
ment occasions (e.g., several occasions on each day for
one or more weeks) and sample sizes around 200 or smal-
ler. With large sample sizes of around 1,000, there is less
benefit in using block-wise fit evaluation. However, sample
sizes around or under 200 are much more common in
empirical research, so block-wise fit is useful for data from
a typical ES study.

When using block-wise fit, researchers need to find logi-
cal blocks in their data. This decision should be based on
the (LST) model and the study design. For example, blocks
can correspond to days. When data was collected over sev-
eral weeks with fewer occasions per day, blocks may better
correspond to weeks.

Compared with existing corrections for the model size
effect, such as Yuan et al. (2015), the block-wise evaluation
provides valuable additional information about each block.
In empirical data, it may happen that some blocks indicate
acceptable fit, while others do not. This information about
the source of misfit can be used to reflect on the model
and data collection. For example, were there any structural
differences between the days of assessment, such as week-
days and weekends being on the same days of the study for
all participants? The R-function to determine block-wise fit
indices is available in ESM 3.

Limitations and Future Research

The main limitation of the block-wise fit approach is evi-
dent from Study 2: misspecifications between blocks cannot

be detected. We have proposed a block-wise fit for each
block, but it is usually not possible to determine a block-
wise fit between two blocks. To calculate block-wise fit
indices, we extract blocks from Σ̂ which only contain the
(implied) (co)variances between items of the same block.
Theoretically, it would be possible to extract the sections
containing only covariances of items from two different
blocks. However, if we assume any kind of measurement
invariance between the blocks, the section of Σ̂ which con-
tains only the implied covariances between two blocks i and
j, i 6¼ j contains identical (and thus linearly dependent) vec-
tors. The determinant of such a matrix is zero, log(0) is not
defined, and a block-wise χ2ij cannot be determined. As a
consequence, the block-wise fit is not informative about
misfit between blocks. In future studies, the block-wise
approach could be extended to include information
between blocks. It should be possible to extract (co)vari-
ances of two consecutive or non-consecutive days and esti-
mate a block-wise indices from these blocks. Blocks of
different sizes could also be an option, for example, if a
researcher is interested in morning- and evening-blocks
with different numbers of measurements.

Also, the influence of differing numbers of indicators per
block on block-wise fit indices was not assessed, and we
cannot give advice on the number of manifest variables
per block. Studies on which common advice for interpreting
fit indices are based might serve as an orientation. For
example, Hu and Bentler (1999) used 15 indicators.

Furthermore, missing data is common in ES studies. In
the article, we have not yet discussed how Full Information
Maximum Likelihood (FIML), a common missing data
strategy, could be applied for block-wise fit indices. To date,
the approach we introduced works with multiply imputed
datasets. For practical reasons, it will be helpful to extend
this approach to FIML. We have also focused on the w2-test,
CFI, TLI and RMSEA, but the block-wise approach can be
extended to other fit indices.

Electronic Supplementary Material

The electronic supplementary materials are available with
the online version of the article at https://doi.org/
10.1027/2151-2604/a000482
ESM 1. Formula of the Standardized Root Mean Square
Residual (SRMR), design, and results of Studies 1 and 2.
Figure E1: Design of Studies 1 and 2. Figure E2: Results
of Study 1 for the single-trait model. Figure E3: Results
of Study 1 for the model with day-specific traits. Figure E4:
Results of Study 2 for each fit index, (a)–(e). Tables E1–E4:
ANOVA tables showing the effects on w2/df ratios, CFI,
TLI, and RMSEA.
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ESM 2. Results of the block-wise degrees of freedom pilot
simulation study.
ESM 3. The R-function to compute block-wise fit indices
based on a fitted lavaan object.
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