Electronic Supplementary Material 1. Examples of interaction calculations.

Abbreviations

$25(\mathrm{OH}) \mathrm{D}=25$-hydroxyvitamin D, LCA = Lung cancer, PCA = Prostate cancer, CI: Confidence interval, $\mathrm{RR}=$ Relative risk, $\mathrm{OR}=\mathrm{Odds}$ ratio, $\mathrm{RD}=$ Risk difference, and $\mathrm{SE}=$ Standard error.

Table E1. Lung cancer among non-smokers.

Smoking	Low 25(OH)D	No	LCA	Risk	95% CI	
No	No	1177	17	0.0142	$0.0089-0.0227$	P00
	Yes	552	10	0.0178	$0.0097-0.0324$	P01

Note. 95% CIs for R_{00} and R_{01} are the Wilson intervals (Brown et al. 2001).
The effect of low $25(\mathrm{OH}) \mathrm{D}$ concentrations in the absence of smoking: RR $(95 \%$ $\mathrm{CI})=1.25(0.58,2.71), \mathrm{OR}(95 \% \mathrm{CI})=1.25(0.57,2.76)$, and $\mathrm{RD}(95 \% \mathrm{CI})=0.0036$ (-0.0082-0.0191).

SE for $\ln (R R)=\sqrt{\frac{1}{10}+\frac{1}{17}-\frac{1}{10+552}-\frac{1}{17+1177}}=0.3952$
Lower 95\% CI for RR $=e^{(\ln (1.2497)-1.96 \times 0.3952)}=0.5760$
Upper 95\% CI for RR $=e^{(\ln (1.2497)+1.96 \times 0.3952)}=2.7115$
SE for $\ln (\mathrm{OR})=\sqrt{\frac{1}{10}+\frac{1}{552}+\frac{1}{17}+\frac{1}{1177}}=0.4019$
Lower 95\% CI for OR $=e^{(\ln (1.2543)-1.96 \times 0.4019)}=0.5706$
Upper 95\% CI for OR $=e^{(\ln (1.2543)+1.96 \times 0.4019)}=2.7574$
Lower 95\% CI for RD
$=0.0036-\sqrt{(0.0178-0.0097)^{2}+(0.0227-0.0142)^{2}}=-0.0082$
Upper 95\% CI for RD
$=0.0036-\sqrt{(0.0142-0.0089)^{2}+(0.0324-0.0178)^{2}}=-0.0191$

References

Brown, L. D., Cai, T. T., \& DasGupta, A. (2001). Interval estimation for a binomial proportion. Statististical Science, 16(2), 101-133.
https://doi.org/10.1214/ss/1009213286

Figure E1. Schoenfeld residuals for the Cox proportional hazards model of lung cancer (LCA) with respect to circulating 25-hydroxyvitamin D $[25(\mathrm{OH}) \mathrm{D}]$ concentrations (low vs. high, subfigure on the left, $p=0.977$ for $\mathrm{H} 0: \beta=0$), smoking status (smoking vs. no smoking, subfigure in the middle, $p=0.003$), and the interaction between circulating $25(\mathrm{OH}) \mathrm{D}$ concentrations and smoking status (subfigure on the right, $p=0.325$). Lines represent $3^{\text {rd }}$ order polynomial regressions, and dotted lines represent 95% confidence bands for the regressions.

Figure E2. Additive effects of circulating 25-hydroxyvitamin D [25(OH)D] concentrations (low vs. high, subfigure on the left, $p=0.571$ for $\mathrm{H} 0: \beta=0$), smoking status (smoking vs. no smoking, subfigure in the middle, $p<0.001$), and the interaction between circulating $25(\mathrm{OH}) \mathrm{D}$ concentrations and smoking status (subfigure on the right, $p=0.309$) on the hazard of incident lung cancer (LCA).

Figure E3. Schoenfeld residuals for the Cox proportional hazards model of prostate cancer (PCA) with respect to circulating 25-hydroxyvitamin D [25(OH)D] concentrations (high vs. low, subfigure on the left, $p=0.247$ for $\mathrm{H} 0: \beta=0$), age (>50 vs. <50 years, subfigure in the middle, $p=<0.001$), and the interaction between circulating $25(\mathrm{OH}) \mathrm{D}$ concentrations and age (subfigure on the right, $p=$ 0.762). Lines represent $3^{\text {rd }}$ order polynomial regressions, and dotted lines represent 95% confidence bands for the regressions.

Figure E4. Additive effects of circulating 25-hydroxyvitamin D [25(OH)D] concentrations (high vs. low, subfigure on the left, $p=0.452$ for $\mathrm{H} 0: \beta=0$), age (>50 vs. <50 years, subfigure in the middle, $p=0.003$), and the interaction between circulating $25(\mathrm{OH}) \mathrm{D}$ concentrations and age (subfigure on the right, $p=0.760$) on the hazard of prostate cancer (PCA).

