Electronic Supplementary Material 1

Appendix A

Figure A. Distribution of prospensity scores.

Compagnoni, M., Rechsteiner, B., Grob, U., Bayer, N., Wullschleger, A. & Maag Merki, K. (2023). No Loss, No Gain? COVID-19 school closures and Swiss fifth-graders' competencies and self-concept in mathematics. *Zeitschrift für Pädagogische Psychologie*.

Appendix **B**

Table B

Math competencies in the main sample (2019/20) and the reference sample (2018/19) with data

before matching

	Main s	ample (1	.9/20)	Referen	ce samp	ole (18/19)			
	n	М	SD	n	М	SD	d cohen	t	df	р
Total	1193	688	1.246	13030	809	1.267	.096	3.177	14221	.000

Note. To compute d_{cohen} , differences in group size were included; p = two-tailed.

Appendix C

Table C

Intra-class correlations for math self-concepts and math competencies

	Variance o	omponents		ICC (b/b+w)								
-	Variance within (w)	Variance between (b)	Estimate	SD	<i>p-v</i> alue	Lower 2.5%	Upper 2.5%					
Self-concept t1	.276	.009	.032	.016	.000	.011	.075					
Self-concept t2	.338	.010	.030	.017	.000	.008	.073					
Self-concept t3	.317	.011	.035	.021	.000	.006	.084					
Math competencies t1	1.568	.214	.117	.024	.000	.076	.172					
Math competencies t3	1.494	.172	.102	.027	.000	.070	.177					

Note. Self-concepts assessed as latent variables, math competencies as manifest variables.

Appendix D

A prerequisite for analyzing constructs over different time points is to confirm measurement invariance. Confirmatory factor analyses with cluster-robust standard errors to control for multilevel data structure were conducted for math self-concept (see Table C for model indices). Assuming that identically formulated items correlated across the three measurement time points, generally in addition to the stability of the shared variance of the factors, and more strongly for shorter periods of time, we imposed model constraints so that the error correlations of closer measurement time points were equaled for each indicator. As $\Delta \chi 2$ is sensitive to sample size > 100, both $\Delta \chi 2$ and ΔCFI were used as fit indices to compare model fit (Cheung & Rensvold, 2002). In a first model for all three measurement time points, the factors were configured from the same variables (configural measurement invariance). In the second model we imposed weak factorial measurement invariance by constraining the factor loadings to be invariant over time. Finding that weak factorial invariance held, we proceeded to test the third model (strong factorial invariance) in which we additionally constrained the intercepts to be invariant over time. In addition, we freed up the latent means from t2 onward to allow for mean change over time. This more restrictive model had a comparable model fit to model 1. Consequently, strong measurement invariance could be assumed for math self-concept. We performed the same stepwise invariance test for the subgroups (first language). Based on Cheung & Rensvold (2002), the Δ CFI of -.006 could be judged as not meaningful and strong factorial measurement invariance was assumed.

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. *Structural Equation Modeling*, *9*(2), 233–255.

4

Table D

Measurement invariance (MI) of math self-concept over time and subgroups

Models	χ^2	df	SCF	p	RMSEA	CFI	SRMR	S-B $\Delta\chi^2$	р
Math self-concept (n = 1,299)								
Configural MI	23.297	18	1.141	.179	.015	.999	.012		
Weak factorial MI	27.857	22	1.125	.181	.014	.999	.022	4.518	.340
Strong factorial MI	30.516	26	1.107	.247	.012	.999	.021	6.986	.538
Model with subgroups: Germ	nan as first l	angua	ige (n = 85	57), not	German as j	first lang	juage (n = 4	407)	
Configural MI	47.146	42	1.115	.270	.014	.999	.018		
Weak factorial MI (group)	55.328	51	1.107	.315	.012	.999	.049	8.115	.523
Weak factorial MI (group and time)	67.358	57	1.105	.164	.017	.998	.067	2.300	.161
Strong factorial MI (group)	74.646	64	1.089	.171	.016	.998	.070	27.634	.188
Strong factorial MI (group and time)	103.574	70	1.087	.006	.028	.992	.068	57.433	.001

Note. Type = complex, cluster = class, SCF = scaling factor, χ^2 = chi-square, RMSEA = root mean square error of approximation, CFI = comparative fit index, SRMR = standardized root mean square residual, S-B $\Delta \chi^2$ = Sartorra-Bentler scaled delta chi-square.

Appendix E

M-Plus Syntax for RI-CLPM

TITLE:	RI-CLPM (basic model math competencies and math self-concepts)
DATA:	FILE IS Covid.dat; !LISTWISE = ON
VARIABLE:	NAMES ARE[];
	USEVARIABLES ARE
	t1_MSC_1 t1_MSC_2 t1_MSC_3
	t2_MSC_1 t2_MSC_2 t2_MSC_3
	t3_MSC_1 t3_MSC_2 t3_MSC_3
	t1_Math t3_Math;
	MISSING = all (-99)
ANALYSIS:	type = complex; MODEL = NOCOV:
	*Auxiliary = (m) urbanity migratio eduparen firstlan gender age;
MODEL:	Mot1 by t1_MSC_1 t1_MSC_2 t1_MSC_3 (L1 - L3);
	Mot2 by t2_MSC_1 t2_MSC_2 t2_MSC_3 (L1 - L3);
	Mot3 by t3_MSC_1 t3_MSC_2 t3_MSC_3 (L1 - L3);
	[t1_MSC_1 t1_MSC_2 t1_MSC_3] (i1-i3);
	$[t2_MSC_1 t2_MSC_2 t2_MSC_3]$ (11-13);
	[[3_IVISC_1 [3_IVISC_2 [3_IVISC_3] (11-13); [Mot2* Mot2*]:
	t1 MSC 1 with t2 MSC 1 (a1)
	t1 MSC 2 with t2 MSC 2 (a2);
	t1_MSC_3 with t2_MSC_3 (a3);
	t2_MSC_1 with t3_MSC_1 (b1);
	t2_MSC_2 with t3_MSC_2 (b2);
	t2_MSC_3 with t3_MSC_3 (b3);
	t1_MSC_1 with t3_MSC_1 (c1);
	$t1_MSC_2$ with $t3_MSC_2$ (c2);
	LI_MSC_3 WILL L3_MSC_3 (C3); RIMot by Mot1@1 Mot2@1 Mot3@1
	WMot1 by Mot1@1:
	WMot2 by Mot2@1;
	WMot3 by Mot3@1;
	Mot1@0;
	Mot2@0;
	Mot3@0;
	WMot2 on WMot1 (n);
	WMot2 on t1_Math;
	t3 Math on t1 Math W/Mot2:
	RIMot with t3 Math t1 Math:
	t1 Math with WMot1:
	t3_Math with WMot3;
	RIMot with WMot1@0;
	Model Constraints:
	a1 = b1;
	a2 = b2;
	a3 = D3;
ΟΠΤΡΓΙΤΟ	:
001101.	

Appendix F

Table F

Standardized parameter estimates of RI-CLPM for math competencies and math self-concept

including auxiliary variables

		CI 9	95 %		יד	wo-tailed
	EST	lower	upper	SE	EST/SE	<i>p</i> -value
Lagged effect State SC t1 - t2	.053	-0.29	.396	.175	.301	.763
Lagged effect State SC t2 - t3	.413	.211	.615	.103	4.004	.000
Lagged effect Math t1 - t3	.684	.648	.721	.019	36.721	.000
Cross-lagged effect State SC t2 on Math t1	.158	008	.324	.085	1.861	.063
Cross-lagged effect Math t3 on State SC t2	.081	.002	.160	.040	2.002	.045
Correlation Trait SC with Math t3	.225	.155	.295	.036	6.282	.000
Correlation Trait SC with Math t1	.508	.418	.598	.046	11.052	.000
Cross-sectional correlation State SC t1 with Math	118	299	.064	.093	-1.270	.204
Cross-sectional correlation State SC t3 with Math	.123	.034	.212	.045	2.704	.007

Note. *N* = 1,299; SC = math self-concept, Math = math competencies, Model fit: $\chi^2(38) = 55.925$, *p* <.031, RMSEA = .019, CFI = .997, SRMR = .023.

Appendix G

Table G

Multiple group RI-CLPM to test for differential effects based on children's first language

Models	χ ²	df	SCF	p	RMSEA	CFI	SRMR	str. pos S-B Δχ²	. р
German first language (n = 857) Not German first language (n = 4	07)								
Multiple group RI-CLPM 1	138.774	92	0.997	.001	.028	.992	.042		
Multiple-group RI-CLPM 2 (constrained ^a)	134.997	101	1.061	.014	.023	.994	.046	3.231	.954

Notes. N = 1,264, str. pos. S-B $\Delta \chi^2$ = strictly positive Satorra-Bentler Chi2 Test (Asparouhov & Muthén, 2010); ^{*a*} all effects invariant across groups.

Asparouhov, T., & Muthén, B. (2010). Computing the strictly positive Satorra-Bentler chi-square test in Mplus. *Mplus Web Notes*, *12*, 1-12.

Appendix H

Table H

Standardized lagged, cross-lagged paths, and cross-sectional correlations for RI-CLPM with first

language, gender, and age as covariates

		CI 9	5 %			Two-tailed
Parameter	EST	low	up	SE	EST/ <i>SE</i>	<i>p</i> -value
Lagged effect State SC t1 - t2	.095	310	.499	.206	0.459	.646
Lagged effect State SC t2 - t3	.434	.209	.660	.115	3.773	.000
Lagged effect Math t1 - t3	.664	.627	.701	.019	34.150	.000
Cross-lagged effect Math t1 - State SC t2	.134	036	.305	.087	1.548	.122
Cross-lagged effect State SC t2 - Math t3	.074	008	.156	.042	1.765	.076
Correlation Trait SC with Math t3	.228	153	.303	.038	5.941	.000
Correlation Trait SC with Math t1	.496	.390	.585	.054	9.175	.000
Cross-sectional correlation State SC t1 with Math t1	112	301	.076	.096	-1.172	.241
Cross-sectional correlation State SC t3 with Math t3	.118	.031	.205	.044	2.668	.008
First language - Trait SC	014	075	.046	.031	-0.464	.642
First language - Math t1	.100	.042	.159	.030	3.367	.001
First language - Math t3	.037	008	.082	.023	1.592	.111
Gender - Trait SC	.214	.143	.286	.036	5.872	.000
Gender - Math t1	.122	.068	.176	.028	4.398	.000
Gender - Math t3	.033	010	.076	.022	1.490	.136
Age - Trait SC	155	231	080	.038	-4.044	.000
Age - Math t1	158	211	104	.027	-5.799	.000
Age - Math t3	074	110	040	.018	-4.183	.000

Note. N = 1,156; SC = math self-concept, Math = math competencies, First language (1 = first language German, 2 = first language not German). Covariates were included as predictors of Trait SC, Math t1, and Math t3. Model fit: $\chi 2(62) = 91.946$, p < .008, RMSEA = .020, CFI = .994, SRMR = .024.

Appendix I

Table I 1

Comparison of RI-CLPMs with gender as time-invariant covariate (constant vs varying effect)

	ι	Incond	itiona	I	Gende	er (cons	tant ef	Genc	Gender (varying effect)				
		CI 9	5 %			CI 95		CI 95 %					
Parameter	EST	low	up	р	EST	low	up	р	EST	low	up	р	
Lagged effects													
State SC t1 - t2	.06	27	.40	.71	.04	30	.39	.80	.03	33	.38	.89	
State SC t2 - t3	.42	.22	.62	.00	.41	.21	.62	.00	.41	.21	.61	.00	
Math t1 - t3	.68	.65	.72	.00	.68	.65	.72	.00	.68	.65	.72	.00	
Cross-lagged effects													
Math t1 - State SC t2	.16	01	.32	.06	.16	01	.33	.06	.14	04	.31	.12	
State SC t2 - Math t3	.08	.00	.16	.04	.08	.00	.16	.04	.08	.00	.16	.04	
Correlations													
Trait SC with Math t3	.22	.16	.30	.00	.23	.16	.30	.00	.23	.16	.30	.00	
Trait SC with Math t1	.51	.42	.60	.00	.50	.41	.59	.00	.51	.41	.60	.00	
State SC t1 with Math t1	12	30	.06	.19	12	30	.06	.19	14	32	.05	.15	
State SC t3 with Math t3	.13	.04	.21	.01	.13	.04	.21	.01	.12	.04	.21	.01	

Note. N = 1,299; SC = math self-concept, Math = math competencies. Gender was included as predictor of Trait SC, State SC (constant vs varying effect), Math t1, and Math t3. All models fitted the data well. Standardized model results are reported.

Table I 2

	L	Incond	itiona	I	_	Age	(consta	nt eff	ect)		Age	(varyiı	ng effe	ect)	
	CI 95 %					CI 95 %					CI 95 %				
Parameter	EST	low	up	р		EST	low	up	р		EST	low	up	р	
Lagged effects															
State SC t1 - t2	.06	27	.40	.71		.07	29	.42	.72		.06	30	.43	.73	
State SC t2 - t3	.42	.22	.62	.00		.41	.20	.61	.00		.41	.20	.61	.00	
Math t1 - t3	.68	.65	.72	.00		.67	.64	.71	.00		.68	.64	.71	.00	
Cross-lagged effects															
Math t1 - State SC t2	.16	01	.32	.06		.15	02	.32	.09		.14	03	.32	.10	
State SC t2 - Math t3	.08	.00	.16	.04		.08	.00	.16	.05		.08	.00	.16	.05	
Correlations															
Trait SC with Math t3	.22	.16	.30	.00		.22	.15	.30	.00		.22	.15	.29	.00	
Trait SC with Math t1	.51	.42	.60	.00		.50	.41	.60	.00		.50	.41	.60	.00	
State SC t1 with Math t1	12	30	.06	.19		12	31	.07	.21		12	31	.07	.20	
State SC t3 with Math t3	.13	.04	.21	.01		.12	.03	.21	.01		.12	.03	.21	.01	

Comparison of RI-CLPMs with age as time-invariant covariate (constant vs varying effect)

Note. N = 1,299, SC = math self-concept, Math = math competencies. Age was included as predictor of Trait SC, State SC (constant vs varying effect), Math t1, and Math t3; N = 1,170 for the models including time-invariant covariate. All models fitted the data well. Standardized model results are reported.

Table I 3

Comparison of RI-CLPMs with first language as time-invariant covariate (constant vs varying effect)

	L	Incond	itiona	I	F (co	irst lan onstan	iguage t effe	e ct)	_	First language (varying effect)				
		CI 9	5 %			CI 9	5 %			CI 95 %				
Parameter	EST	low	up	р	EST	low	up	р	EST	low	up	р		
Lagged effects														
State SC t1 - t2	.06	27	.40	.71	.10	27	.47	.60	.10	27	.47	.60		
State SC t2 - t3	.42	.22	.62	.00	.44	.23	.65	.00	.45	.24	.66	.00		
Math t1 - t3	.68	.65	.72	.00	.68	.64	.71	.00	.68	.64	.72	.00		
Cross-lagged effects														
Math t1 - State SC t2	.16	01	.32	.06	.13	03	.29	.12	.12	05	.29	.16		
State SC t2 - Math t3	.08	.00	.16	.04	.08	00	.16	.06	.08	00	.16	.06		
Correlations														
Trait SC with Math t3	.22	.16	.30	.00	.23	.16	.31	.00	.23	.16	.31	.00		
Trait SC with Math t1	.51	.42	.60	.00	.52	.42	.62	.00	.52	.42	.63	.00		
State SC t1 with Math t1	12	30	.06	.19	13	31	.06	.18	14	33	.06	.18		
State SC t3 with Math t3	.13	.04	.21	.01	.12	.03	.21	.01	.12	.03	.21	.01		

Note. N = 1,299, SC = math self-concept, Math = math competencies. First language was included as predictor of Trait SC, State SC (constant vs varying effect), Math t1, and Math t3. N = 1,264 for the models including time-invariant covariate. All models fitted the data well. Standardized model results are reported.