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Abstract: Meta-analyses are an important part of the methodological inventory for the synthesis of 

empirical findings and the derivation of evidence-based measures. So far, univariate approaches 

have dominated, which aim at the integration and analysis of individual effect sizes and are, thus, of 

limited value for testing multivariate (causal) relationships. Meta-analytical structural equation 

models (MASEM) represent a helpful extension, as they allow a meta-analytical analysis of complex 

multivariate structures. In addition, MASEM can be used to map dependencies between multivariate 

effect sizes and multi-level structures. The aim of this paper is to outline the conceptual foundations 

of MASEM and to illustrate them using an empirical example from organizational psychology. Finally, 

a critical discussion of the limitations of the approach will be provided. 
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Meta-analyses are a valuable alternative to narrative reviews and ideally offer an objective and 

standardized overview of the research on a given issue. They are considered not only as an important 

tool of theory-based research, but also as an important basis for evidence-based practice. However, 

while meta-analyses of experimental studies mainly focus on heterogeneity, i.e. significant 

differences in effect sizes and estimation of a mean causal effect (Smith & Glass, 1977), meta-

analyses in non-experimental fields are based on an aggregation of bivariate correlations. 

Even though these 'univariate approaches' have established themselves in the literature as a helpful 

form of synthesis of research, the combination of meta-analysis and meta-analytical structural 

equation modeling (MASEM) represents a decisive expansion of the meta-analytical spectrum of 

methods. Analogous to the application of structural equation models on primary data, a MASEM is 

based on the correlation matrix of several features. The difference to a primary study is that each cell 

of this matrix is formed meta-analytically. The specified model then represents a summary of all 

hypothetical causal effects of the variables and allows to test the implications resulting from the 

model by means of statistical tests and other evaluation standards (Kline, 2016). Although even a 

good model fit with the data does not prove the correctness of the causal assumptions, it is at least a 

possibility to test causal hypotheses. 

In particular, MASEM offers the following advantages (compared to univariate approaches): First, 

more complex causal structures can be specified and thus multivariate models and theories can be 



 

 

represented in their breadth (Brown & Peterson, 1993). In this case, the results of the models 

represent a compact and integrated form of evidence of or against the theory. Second, MASEM 

allows the comparison of competing models or theories that entail different implications for the data 

(Harrison, Newman & Roth, 2006; Hom, Caranikas-Walker, Prussia & Griffeth, 1992). For example, 

Hom et al (1992) compare different process models of the development of an intention to quit a job 

by means of meta-analytical models. 

Third, MASEM enables the analysis and testing of mediators as postulated central processes 

underlying an effect (Shadish, 1996). Mediators are of enormous importance, both theoretically and 

practically, because they can answer the theoretical question of 'why' of an effect as well as the 

practically relevant question about potential mechanisms. A model can involve several mediators 

simultaneously and is much more flexible in taking into account the complexity of mediator 

structures (e.g. by estimation of effects of mediators on each other). This is particularly essential if 

there are several mediators with opposite signs, thus, attenuating or even eliminating an overall 

relationship. One example is Murayama and Elliot's MASEM (2012) on the impact of competitive 

situations in individual performance contexts, in which the authors show that while there is no 

substantial general relationship between competition and performance, there are two mechanisms 

that have opposite signs. 

Fourth, a multivariate model implies that effects of variables are estimated while keeping other 

variables statistically constant. Thus, it is possible to explicitly include control variables in MASEM, 

even if this usually results in practical limitations due to the limited availability of a sufficient number 

of studies. Fifth, it is possible to integrate variables into a model that make it possible to reduce the 

plausibility of alternative causal directions or non-considered confounding variables. Such 

instrumental variables have become essential in fields such as econometrics for decades, and are 

slowly emering in psychology (Antonakis, Bendahan, Jacquart & Lalive, 2010) and in the analysis of 

structural equation models (Maydeu-Olivares, Shi & Rosseel, 2019; Steinmetz, 2014). This approach 

is also attractive because model structures often exist in which instrumental variables are already an 

integral part of the tested model. 

Overall, MASEM thus represents a powerful approach to combine the advantages of meta-analyses 

(e.g. systematic aggregation of respective research papers, large samples, and possibilities to analyze 

differences between studies) with those of structural equation models. 

Approaches and procedure 

In contrast to classical univariate meta-analyses based on the approaches of Hedges and Olkin (1985) 

and Schmidt and Hunter (2015), a MASEM is based on a meta-analytically formed correlation matrix 

of all model variables. Three methods have been developed so far to generate this correlation matrix 

(Sheng, Kong, Cortina, & Hou, 2016). 

The "pairwise aggregation approach" (Brown & Peterson, 1993; Viswesvaran & Ones, 1995) consists 

in forming the individual cells of the pooled correlation matrix by means of univariate meta-analyses 

isolated from each other. The correlations are also isolated and tested for heterogeneity, as is usual 

with univariate meta-analyses. In the following step, the correlation matrix thus generated is then 

used as the basis for the specification and testing of the model. 

The "two-step approach" (Cheung & Chan, 2005b) is based on a critique of the pairwise aggregation 

approach, for instance, the isolated heterogeneity tests, the unclear sample size with a different 

number of correlations per cell and the inadequate use of a (standardized) correlation matrix as the 

basis for a model. In contrast, the alternative of Cheung and Chan (2005b) proposes aggregating the 

correlation matrices in the first step by using a multi-group model in which each primary study is 



 

 

treated as a separate "group". The result is an estimate of the total correlation matrix across all 

studies and cells of the matrix. In the second step, the total matrix estimated in this way is used as 

the basis for the MASEM. Information about differences between the groups in the correlations and 

sample sizes from the first step is used to weight individual parameters of the model. Consequently, 

parameters of the model that are based on studies with small sample sizes will result in larger 

uncertainties (in terms of confidence intervals). 

The third, multi-level based, approach (Wilson, Polan & Lipsey, 2016) addresses the problem in meta-

analyses that primary studies often contain multiple, statistically dependent effect sizes (Cheung, 

2014; Steinmetz, Knappstein, Ajzen, Schmidt & Kabst, 2016). For example, the meta-analysis of 

Steinmetz et al. (2016) included primary studies that compared several treatment groups with the 

same control group. Similarly, it often happens that several correlations are presented in a primary 

study, all of which represent the same target correlation relevant for the meta-analysis. Since the 

multiple effect sizes reported in one study are more similar to each other than if they came from 

different studies, variances in effect sizes are underestimated. Multi-level meta-analyses are 

comparable with conventional multi-level analyses, in which, for example, people are nested in 

teams. While a simple regression model would assume the independence of the persons, a multi-

level analysis allows it to consider the stronger similarity of the persons in the team. Likewise, the 

multi-level meta-analysis considers the similarity of effect sizes by considering the specific effect sizes 

as nested in studies and statistically taking this structure into account. 

While the original applications of multilevel meta-analysis were aimed at univariate effect sizes, 

Wilson et al. extended the approach to MASEM, entails performing a multi-level random-effects 

regression in the first step, in which a single vector with all available correlations is regressed on a set 

of dummy variables that merely represent the names of the individual correlations in the vector in 

question. Table 1 shows an exemplary section of the data set on which this regression is based. Of 

particular relevance here are the column with the study identification number, each of which refers 

to a sample under investigation, and the columns with the correlations and the corresponding 

naming variables. Since the latter is treated as categorical in the regression analysis and the 

regression model is calculated without an intercept, the regression coefficients reflect the weighted 

mean correlations per cell of the matrices, which is represented by the name of the respective 

correlation. Overall, the regression analysis thus provides all aggregated correlations of the matrix in 

a single step. As in the approach of Cheung and Chan (2005b), this correlation matrix is then used as 

the basis for the MASEM; information on differences between the studies is used to weight the 

parameters and the sum of the sample sizes is used as the relevant sample size. 

Overall, the multi-level approach has several advantages over the two-step approach. First, multiple 

correlations are the rule rather than the exception in practice, especially if the target constructs are 

located at a higher level of abstraction. The multi-level approach then allows the correlations 

presented in the primary studies to be meta-analyzed in the form in which they exist without having 

to take the detour criticized in the literature of forming intra-study averages (Cheung, 2014). The 

practical advantages include the fact that the correlations of the primary studies are directly 

transferred and any manipulation (e.g. by the aforementioned averaging, aggregation, or renaming) 

is avoided. Thus, the meta-analytical data set exactly represents the content of the primary studies, 

which increases transparency and replicability. Theoretical and methodological decisions (e.g. on the 

selected level of abstraction) are made by the above-mentioned naming of the correlations and can 

be flexibly adapted for alternative levels of aggregation or future studies. A disadvantage of the 

approach is that the correlation matrix generated in the first step is directly used as a basis for the 

model, which is actually based on a covariance matrix. This is where Cheung's approach is 

advantageous, in that a potentially distorting effect is avoided by an elegant use of the group model. 



 

 

Illustration of the MASEM approach 

The model 

Due to the advantages of the multi-level approach, we have chosen it for illustration purposes, even 

though the problem of multiple correlations did not exist in the given case. The starting point is a 

model that tests the effect of team diversity in working groups on conflicts, cohesion, and team 

performance. The focus of interest here is, on the one hand, bio-demographic diversity, which refers 

to easily identifiable characteristics such as gender, age, or ethnicity, and, on the other hand, task-

related diversity, as is the case with differences in the functional areas or educational paths of team 

members (Horwitz & Horwitz, 2007). 

The specified model (see Fig. 1) proposes that bio-demographic diversity leads to a greater degree of 

relationship conflicts due to the categorization processes predicted by social identity theory (Tajfel, 

1982). In contrast, task-related diversity should lead to stronger task-related conflicts. Since these 

may escalate, an additional effect on relationship conflicts is assumed. Finally, the model postulates 

that the effect of both types of relationship on team performance is entirely mediated by the 

cohesion of the team. The model structure is well suited to illustrate the discussed advantages of a 

multivariate approach over the univariate focus on individual correlations: There are correlating 

predictors whose influence must be mutually controlled as well as mediators with potentially 

opposing effects. Finally, the structure provides for an isolated influence of both diversity 

characteristics on specific forms of conflict, which gives them the status of potential instrumental 

variables and allows to test the downstream parts of the model for confounding factors or reverse 

effects and, in a given case, to estimate the effects, despite their presence, consistently. 

Data and modeling procedure 

The data basis is formed by a total of 52 publications, which had provided correlations from one 

sample each (N = 3,383 teams) and reported a total of 211 correlations. The studies varied greatly 

with regard to the number of correlations reported: For example, 28 studies reported a correlation 

between task-related diversity and team performance, but only 3 studies reported a correlation 

between relationship conflicts and cohesion. 

In a first step, the meta-analytical aggregation of the correlation matrices was performed by means 

of a random effects dummy regression (Wilson et al., 2016). The metafor package (Viechtbauer, 

2010) within the software package R was used for this purpose (R Core Team, 2019). Instead of the 

symmetrical matrix, Table 2 shows the output of the regression. Each row represents an expression 

of the categorical variable that was used to name each correlation, and the regression weights are 

the meta-analytical averaged correlations. In a second step, the structural model was specified and 

estimated using the metaSEM package (Cheung, 2015). 

The fit of the tested model did not point to a misfit (χ2 (df) = 15.3 (8), p = .05, RMSEA = .02). The 

parameter estimates (see Fig. 1) did show non-significant effects for bio-demographic diversity and 

marginal effects for task-related diversity. In contrast, the effects of both conflict types on cohesion 

and of cohesion on team performance were substantial and significant. However, the results show 

effects of both conflict types that are mediated by cohesion. Assuming the correctness of the 

specified structure, this would imply two effects on cohesion and performance especially for task-

related conflicts - a positive direct effect via positive stimulation of team discussions, but also a 

negative indirect effect via the higher probability of harmful relationship conflicts. MASEM thus 

makes a valuable contribution to decomposing general relationships into partial effects. 



 

 

While usual representations of structural equation models usually end with the presentation of 

parameter estimates, more detailed discussions can be held on the basis of graph-theoretical 

principles (Pearl, Glymour & Jewell, 2016) to evaluate to what extent the model or certain parts of it 

support the underlying causal assumptions. In this regard, the possibility of equivalent structures 

with the same implications for the data plays a central role (Spirtes, Glymour & Scheines, 2003). This 

enables a more informative and differentiated assessment of the evidence by the model. While the 

basic structure of the model provided a very good starting point for causal interpretations specifically 

for the effects of conflict and cohesion, the non-significant effects of diversity variables led to the 

cancellation of their instrumental variable function for these effects (Antonakis, et al., 2010). As a 

result, the relationships between the two types of conflict and cohesion could not be tested for 

confounding or reversibility effects. The interpretation of the coefficients is thus based on the 

theoretical plausibility of assumptions about the effects of the conflicts (versus alternatives). 

The effect of cohesion on team performance, on the other hand, is on a somewhat more solid 

ground, although an alternative model with a completely reversed causal direction (team 

performance → cohesion → conflicts) or even a purely spurious correlation between cohesion and 

performance cannot be distinguished from the tested model. Here, concrete theoretical assessments 

are required to determine the extent to which specification errors of such magnitude are plausible. 

To evaluate this critically could be the central implication of this MASEM for future research. 

Heterogeneity 

As in any meta-analysis, heterogeneity plays an important role in a MASEM and is even more 

significant than in meta-analyses with bivariate correlations: Like any structural equation model, a 

MASEM is based on the assumption of causal homogeneity (Mulaik, 2009; Muthén, 1989), which 

means that it describes a population in which there are no subgroups with different effects (Mulaik, 

2009, p. 188). In the case of causal heterogeneity, a potential bias depends on the number of 

subpopulations as well as the extent and nature of the differences across subpopulations. In the case 

of moderate heterogeneity, where only the strength of the effects varies across groups, effect 

estimates can simply be interpreted as mean effects (see the discussion of a relevant exception in 

Winship & Elwert, 2010). In extreme cases, however, completely different causal structures are 

present, which make aggregation meaningless. 

For these reasons, the analysis of heterogeneity is of great importance. First of all, an important 

indication is the model fit: While an empirically insufficiently fitting model can of course indicate a 

general mis-specification, the mismatch can also be determined by causal heterogeneity. For 

example, the aggregation of subgroups with different structures leads both to distorted mean effects 

and to a mismatch of the model to the data. Traditionally, the observed heterogeneity of the 

correlation matrix, but also of individual, theoretically relevant correlations, is another indicator. 

In both cases, an attempt should be made in a MASEM application to identify moderators who can 

explain the heterogeneity. Due to the multivariate data structure, this is more difficult than in the 

case of simple correlations. Suggestions range from the possibility of performing a subgroup analysis 

to categories of individual observed moderators (Jak & Cheung, 2018) and the use of cluster analyses 

(Cheung & Chan, 2005a) to identify groups with similar profiles of correlations. Disadvantages are 

difficulties in interpreting the identified groups (Steinmetz, Isidor, & Baeuerle, 2012). 

Wilson et al (2016) present an interesting approach to use the weights of the moderators estimated 

in a meta-regression analysis to predict a correlation matrix that would correspond to a desired 

profile of moderators and to use this as the basis for the model. For example, a moderator "task 

complexity" weight estimated in the meta-regression of B = .5 for the correlation between task-

related conflicts and team performance would allow this correlation to be predicted for a desired 



 

 

value of this moderator (e.g., estimated role of task-related conflicts for highly complex professions). 

Applied to all the moderators studied and the entire correlation matrix, this allows the prediction of 

the entire matrix for a desired profile of moderator - for example, for teams with the profiles 

"technology sector", "high task complexity" and "from individualized cultures". 

While the most intuitive and easy-to-interpret approach is subgroup analysis, in most cases this fails 

due to incompletely occupied cells of the correlation matrix as a consequence of group separation. In 

these cases it will therefore only be possible to perform traditional moderator analyses with central 

bivariate correlations. Results may alert future research to potential moderators of the underlying 

effects. In the current study, for example, specific homogeneity tests showed that correlations 

between biodemographic diversity and relevant variables were homogeneous, while correlations 

between task-related diversity and relevant variables (e.g. team performance) deviated significantly 

from the homogeneity assumption. The latter could provide a basis for moderator analyses of the 

correlations in question, although they would still have to focus on the bivariate correlation. 

Conclusion and limitations 

Compared to univariate meta-analyses, MASEM offers the advantages of modeling complex theories, 

inclusion of control variables, estimation of indirect effects and a model test. However, in practice 

they are often subject to restrictions, especially in the availability of variables whose inclusion would 

be theoretically useful or (e.g. as control variables) necessary. In addition, the 'apple-and-pear 

problem' of aggregating the most diverse constructs (Lipsey & Wilson, 2001), which is frequently 

discussed in the meta-analytical literature, has special implications, since the risk of causal 

heterogeneity increases with a broad focus of the meta-analysis. On the other hand, a more specific 

focus leads to a reduction in the empirical basis and thus the number of available studies and 

possible variables. Finding a reasonable compromise here is a central task of every MASEM 

approach. 

Overall, MASEM makes a significant contribution to research synthesis and represents an 

improvement over univariate approaches; however, they do not replace strict primary studies, which 

offer better opportunities for strengthening internal validity. Instead, MASEM tries to combine both 

the addressing of classical questions of generalizability and causal identification in a useful way and 

can serve as a starting point for a targeted implementation of future primary studies. 
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Table 1: Example excerpt from the data set 

Study ID Effect size ID Name of the correlation r 

1 1 Task-based diversity - Bio-demographic diversity .22 

1 2 Cohesion - Bio-demographic diversity .36 

1 3 Relationship Conflicts - Bio-demographic Diversity - .23 

1 4 Task-related conflicts - Bio-demographic diversity -.07 

2 5 Team Performance - Bio-demographic Diversity -.18 

2 6 Cohesion - Task-based diversity .24 

2 7 Relationship Conflicts - Task-based Diversity -.46 

3 8 Task-related conflicts - Task-related diversity .32 

4 9 Team Performance - Task-Based Diversity -.23 

4 10 Relationship Conflicts - Cohesion -.36 

5 11 Task Conflicts - Cohesion .24 

5 12 Team Performance - Cohesion .16 

5 13 Task Conflicts - Relationship Conflicts - .69 

6 14 Team Performance - Relationship Conflicts - .23 

6 15 Team Performance - Task Conflicts - Task Conflicts -.18 

6 16 Cohesion - Bio-demographic diversity -.12 

6 17 Cohesion - Bio-demographic diversity .03 

6 18 Team performance - Bio-demographic diversity -.03 

6 19 Team performance - Cohesion .32 

7 20 Cohesion - Bio-demographic diversity -.17 

7 21 Team performance - Bio-demographic diversity .35 

7 22 Team performance - cohesion .39 

8 23 Cohesion - Task-based diversity .10 

8 24 Team Performance - Task-based Diversity .08 

8 25 Team Performance - Cohesion .05 

9 26 Cohesion - Task-based diversity .06 

9 27 Team Performance - Task-based Diversity .20 

9 28 Team Performance - Cohesion .32 

10 29 Cohesion - Task-based diversity .06 

10 30 Team Performance - Task-based Diversity .03 

10 31 Team Performance - Cohesion .18 

11 32 Team Performance - Task-based Diversity .04 

12 33 Team Performance - Task-based Diversity .38 

13 34 Task-based Diversity - Bio-demographic Diversity - .26  

  



 

 

Table 2: Result of the random effects dummy regression 

Correlation B (SE) CI (95%) 

Task-based diversity - Bio-demographic diversity .10 (.05) .00       .20 

Task-based diversity - Task-based diversity .14 (.06)* .02       .26 

Task-related Conflicts - Relationship Conflicts .47 (.04)** .39       .56 

Task-based Conflicts - Bio-demographic Diversity .05 (.06) -.06       .16 

Task-based conflicts - Cohesion .09 (.12) -.15       .33 

Relationship Conflicts - Task-based Diversity .02 (.07) -.10       .15 

Relationship Conflicts - Bio-demographic Diversity .07 (.05) -.03       .17 

Relationship conflicts – cohesion - .20 (.12) -.43       .04 

Team performance - Task-based diversity .07 (.04) -.01       .14 

Team performance - Task related conflicts -.09 (.05) -.19       .02 

Team performance - Relationship conflicts -.18 (.06)** -.29       .08 

Team performance - bio-demographic diversity .01 (.04) -.07       .09 

Team performance - Cohesion .26 (.06)** .15        .37 

Cohesion - Task-based diversity .00 (.07) -.13       .13 

Cohesion - Bio-demographic diversity .03 (.08) - .13      .19 

 

  



 

 

 

Figure 1: Tested model 


