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1. Supplementary Methods: Details about the original studies  
(Samples, Data Acquisition, Preprocessing) 
 

This study builds on two public fMRI datasets. First, the main dataset is the Queensland 

Adolescent Twin Brains (QTAB) dataset, which contains fMRI recordings from twins watching a 

Pixar short film titled Partly Cloudy in Queensland, Australia1 (Strike et al., 2022). The second 

fMRI dataset (Boston dataset) was also recorded while participants viewed the Partly Cloudy short 

film, and it was actually the first study using this particular stimulus (Richardson et al., 201X). 

This dataset was recorded from non-twin individuals, and it included a broader sample in terms of 

age range (i.e., younger children, adolescents, and adults). Below, we describe details of each 

dataset. For further details, we refer readers to the respective original populations. 

1.1. Queensland Adolescent Twin Brains (QTAB) dataset: Partly Cloudy 

1.1.1. Sample 

Twins from the area surrounding Brisbane, Queensland, were recruited through twin registries and 

online postings. There were two study sessions, and the presentation of the Partly Cloudy video 

happened at the second session. In the following, we focus only on the part of the study that are 

relevant to the current investigation, leaving aside additional tasks and data (e.g. saliva samples, 

etc.) that were also collected during the QTAB study.  

1.1.2. Procedure and Data Acquisition 

 
1 The movie can be viewed at: https://www.youtube.com/watch?v=5VRc8poIwU4  

https://doi.org/10.1027/1864-1105/a000422
https://paperpile.com/c/8cMbSa/oE7W
https://www.youtube.com/watch?v=5VRc8poIwU4
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In brief, participants watched the Pixar movie Partly Cloudy while in the scanner without further 

instruction. The stimulus was presented on a back-projection screen and participants viewed via a 

mirror that was attached to the scanner head coil.  

 

 

Scanning took place on a 3T Magnetom Prisma (Siemens Medical Solutions, Erlangen) MRI 

scanner. Anatomical and functional scans were acquired, and full details are given in the data 

descriptor paper and on OpenNeuro (accession number ds004146), where the data are provided in 

the BIDS-compatible data format. For the Partly Cloudy movie, a total of 380 volumes were 

acquired (duration ca. 5 min 11 sec) with a TR/TE=800/30ms  (FA = 52 deg, A>P, 60 slices, and 

a FOV of 216×216mm, slice acceleration=6).  

1.1.3. Preprocessing 

Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.2 

(Esteban, et al., 2018; Esteban, et al., 2018), which is based on Nipype 1.6.1 (Gorgolewski et al., 

2018). 

Preprocessing of B0 inhomogeneity mappings. A total of 1 fieldmaps were found available within 

the input BIDS structure for this particular subject. A B0-nonuniformity map was estimated based 

on echo-planar imaging (EPI) references (Andersson et al., 2003). 

Anatomical data preprocessing. A total of 1 T1-weighted (T1w) images were found within the 

input BIDS dataset.The T1-weighted (T1w) image was corrected for intensity non-uniformity 

(INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et 

al. 2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-

reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh 
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workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-

extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823, Zhang, Brady, and Smith 

2001). Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template. The following template was 

selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 

[Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym]. 

Functional data preprocessing. For each of the Partly-Cloudy-related BOLD runs per subject 

(across all tasks and sessions), the following preprocessing was performed. First, a reference 

volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. 

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) are estimated before any spatiotemporal 

filtering using mcflirt (FSL 6.0.5.1:57b01774, Jenkinson et al. 2002). BOLD runs were slice-time 

corrected to 0.351s (0.5 of slice acquisition range 0s-0.703s) using 3dTshift from AFNI (Cox and 

Hyde 1997, RRID:SCR_005927). The BOLD time-series (including slice-timing correction when 

applied) were resampled onto their original, native space by applying the transforms to correct for 

head-motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in 

original space, or just preprocessed BOLD. The BOLD reference was then co-registered to the 

T1w reference using mri_coreg (FreeSurfer) followed by flirt (FSL 6.0.5.1:57b01774, Jenkinson 

and Smith 2001) with the boundary-based registration (Greve and Fischl 2009) cost-function. Co-

registration was configured with six degrees of freedom. Several confounding time-series were 

calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 
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region-wise global signals. FD was computed using two formulations following Power (absolute 

sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power et 

al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for component-based 

noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after high-

pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) 

for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 2% variable voxels within the brain mask. For 

aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in 

anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding 

the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that 

likely contain a volume fraction of GM. This mask is obtained by thresholding the corresponding 

partial volume map at 0.05, and it ensures components are not extracted from voxels containing a 

minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 

thresholding at 0.99 (as in the original implementation). Components are also calculated separately 

within the WM and CSF masks. For each CompCor decomposition, the k components with the 

largest singular values are retained, such that the retained components’ time series are sufficient 

to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 

The remaining components are dropped from consideration. The head-motion estimates calculated 

in the correction step were also placed within the corresponding confounds file. The confound time 

series derived from head motion estimates and global signals were expanded with the inclusion of 
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temporal derivatives and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded 

a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. The 

BOLD time-series were resampled into standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. All resamplings can be performed with a 

single interpolation step by composing all the pertinent transformations (i.e. head-motion 

transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed using 

mri_vol2surf (FreeSurfer). Many internal operations of fMRIPrep use Nilearn 0.8.1 (Abraham et 

al. 2014, RRID:SCR_001362), mostly within the functional processing workflow. For more details 

of the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Functional data extraction. From the preprocessed functional volumes, we then extracted regional 

time series that measure the viewers’ regional brain responses during movie viewing. As described 

in the main paper and detailed further in the online code repository, we used a brain atlas 

comprising 293 regions. Using a masker from the nilearn package, we set a temporal high-pass 

filter to 0.01 Hz, activated the detrending option, and extracted z-scored data time series. This 

yielded  a data a matrix of 293 regions * 380 time points (volumes), which was extracted for each 

of 200 viewers. 

1.2. Boston, USA Dataset (MIT): Partly Cloudy 

The sample for the Boston dataset came from a study of child brain development that included a 

total sample of 155 viewers, who also watched the same movie: Partly Cloudy. The dataset is 
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publicly available (OpenNeuro #ds000228) and it contains fMRI recordings from adults and 

children watching the Partly Cloudy short film (Richardson et al. 2018), along with typical 

descriptor data like participant sex and age, all also in the BIDS format. This dataset, its sample, 

and processing details have been described in at least two publications (Richardson et al, 2018, 

blinded_for_review) and thus we limit the presentation here to the main aspects.  

The sample was restricted to exclude the children below the age of 12, leaving 33 viewers (20 

female). Participants were recruited from the local Bostonian community, and they were scanned 

on a 3-Tesla Siemens Tim Trio scanner located at the Martinos Imaging Center at MIT. 

BOLD-fMRI data were collected with a gradient-echo EPI sequence in 32 interleaved axial slices 

aligned with the A/P commissure (EPI factor: 64; TR: 2 s, TE: 30 ms, flip angle: 90°). Given the 

slower TR in this study compared to the QTAB study, it took 168 volumes to acquire brain 

responses during movie viewing. Of note, the QTAB study provides further details about the 

specific stimulus version used, including timing details and format/codecs. However, it is worth 

noting that while the same movie was shown to both audiences (QTAB and Boston), the specific 

timing differed minimally (regarding disdaq-volumes, movie credits, and the more precise timing 

in the QTAB study).  

Preprocessed functional data , were downloaded from OpenNeuro’s BIDS-derivatives folder 

(slice-time corrected, realigned, and normalized), and our own analyses of these data were then 

carried out using functions from the nilearn and BrainIAK packages (Abraham et al. 2014; Kumar 

et al. 2020). As for the QTAB processing pipeline, the fMRI data were high-pass filtered at 0.01 

Hz, detrended, and regional brain activity time series were extracted from the 268 regions provided 

by the Shen-parcellation  (Shen et al., 2013) and z-standardized. One additional detail worth 

pointing out is that the Boston-data were extracted from 268 regions of the Shen parcellation only, 
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compared to the QTAB dataset for which we extracted data also from the 268-region parcellation, 

but added a few anatomically defined subcortical regions. Given that ISC is low in these regions 

anyway, and our interest here is about the cortical response similarity, this does not matter further. 

Thus, comparisons between the Boston and QTAB data refer only to the 268 regions common to 

both datasets. Moreover, it is worth noting that the Boston dataset contains 33 viewers, 268 

regional timeseries, and 168 data points, the QTAB dataset contains 200 viewers, als 268 regional 

timeseries (or 293, if subcortical structures were added), but 380 data points (due to the faster TR 

of 0.8s vs. 2s).  

 

2. Supplementary Methods: Details about ISC analysis 
 
2.1. Randomization Time-Series and Bootstrapping Analysis 
 
In the literature about ISC, there has been some discussion and confusion about methods for 

statistical significance testing. Additionally, there are different levels of granularity at which ISC 

results can be assessed. For instance, ISC can be computed on a pair-to-pair level (as done here) 

or between individuals and the average among the remainder of the group without this participant. 

Also, ISC can be computed over time-series extracted from regions (as done here), or it can be 

computed at the level of voxels. Finally, several papers have examined the statistical properties of 

ISC, and how they depend on the specific choice within this space (voxels vs. regions, pairs vs. 

groups, etc). Importantly, it has been suggested that ISC statistics computed across pairs of 

participants (and typically at the voxel level) suffer from a tangled structure, which can bias 

parametric tests. Several strategies have been proposed and we thus carry out additional analyses 

complementing the results in the paper to demonstrate that the results and conclusions are the 

same. In particular, the main results are computed using a bootstrap statistic in which the ISC 
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among pairwise viewers is resampled and used as a reference distribution to compute significance. 

Another strategy is to resample phase-shifted time-courses to create a null  distribution. Other 

options exist as well, but these are the main options (aside from the LOO-approach) (Chen et al, 

2016, 2017; De Angelis et al., 2020, Nastase et al., 2019). In Figure E1, we demonstrate that the 

results are practically identical, especially for the sample of 200 audience and our region-based 

approach. Moreover, we also show that at a higher statistical threshold (leading to more 

conservative results), the observed ISC stays significant (Lindquist & Meija, 2015).  

 

 
Figure E1. Results for different analysis methods and parameters. Top panels: ISC values per 
audience, corrected based on the statistical approach described in the title. As can be seen, the 
different approaches lead to the same pattern of significant ISC results, even at higher 
thresholds (bottom left panel). Bottom right panel: Exemplary results for the null distribution 
based on different approaches. As described in the literature, the bootstrap approach is more 
conservative (broader distribution), but the observed ISC (red line) is far outside of the CI for 
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all the different approaches (phase-randomization, circular shifting, and bootstrapping). See 
text for details. 
 

 

 
3. Supplementary Results and Control Analyses 
 

3.1. Supplementary Analysis: Structural Similarities 

The first analysis was motivated by the notion that twins’ brains might be anatomically more 

similar, which might drive at least some of the resulting functional differences, despite the fact 

that all brains were normalized into a common MNI space. To that end, we derived a metric of 

anatomical similarity by correlating the normalized T1 images, i.e., vectorizing the grayscale 

image values and then comparing similarity in much the same way we compared functional time 

series. The results show that brain-to-brain anatomical similarity is high, as expected given the 

normalization (around 0.7-0.8), but varies slightly across individuals. When testing whether 

anatomical similarity is related to ISC (functional response similarity), we find a number of regions 

exhibiting positive effects for the twin-comparison (62), but far fewer for the control pairs (6) and 

others (12). Although these studies are preliminary and should be supplemented with more in-

depth analyses such as shared response modeling and hyperalignment approaches (Nastase et al., 

2019), they may imply that ISC differences are, at least in part, based on anatomical similarities.  

 
3.2. Supplementary Analysis: Predicting Kinship status from ISC 

The second set of supplementary analyses focused on prediction and classification. Given that 

we found differences in ISC between twins and non-twins, we can also ask an intriguing question: 

Can we use the ISC strength between two people to predict whether the pairings are twins or not? 

This transposes our conventional design, where ‘relationship status’ represents the independent 
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variable (IV) and the ISC is the dependent variable (DV). In the resulting transposed design,  ISC 

represents a feature/IV, and the ‘relationship status’ represents the target variable/DV. Recasting 

the study in this way turns the analysis into a classification problem. To investigate this research 

problem, we created a predictive modeling pipeline that used ISC results as features to classify the 

target variable (twin vs. no-twin relationship status). More specifically, we obtained the ISC from 

all 293 regions  for the 100 twin pairs and computed ISC for another group of 100 randomly 

selected individuals (again for all 293 regions). This way, we obtain a balanced dataset (100 twins 

and 100 non-twins) that is easy to interpret, annotate, and analyze. We then used a standard logistic 

regression model with a leave-one-out cross-validation strategy, and tested model performance 

against a baseline dummy classifier. As expected given the balanced dataset, the dummy classifier 

performed at chance level (50%), whereas the logistic regression model using actual data 

(comprising measured response similarities across all brain regions) performed with an accuracy 

of 67% on average. In other words, by just comparing the inter-brain similarity during movie 

reception between two viewers in this sample, we could classify correctly whether the two were 

twins in nearly 7 out of 10 cases.  

 
3.3. Control Analysis: Cross-continental Response Similarity Analysis based on Time Series 
 
We provide an additional time-series based analysis for the inter-continent comparison. The main 

inter-continent-comparison was based on comparing the spatial pattern of ISC found in each 

audience - i.e. computed separately among Australian and US viewers, and then compared. 

Readers might ask why we did not compare the underlying time series directly, as they watched 

the same movie. The issue is that the dataset from Brisbane has a different TR (time of repetition) 

that the one from Boston; in other words, the data in Australia were sampled faster/more often. In 

addition, the moment at which the movie was started differed a bit between sites, and the movie 
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differed a bit (in terms of its credits, onset, offset). This all makes it more difficult to align  the 

neural time series across continents that it might initially seem. On top of this all, the fMRI data 

were acquired with different scanners and processed somewhat differently, which is another 

challenge. Therefore, the main analysis in the paper is in our view more robust, as it only compares 

data that are actually comparable (i.e. homogeneously acquired). Comparing the results of these 

two samples seems fine, but  comparing the time series is more challenging for all these reasons. 

Nevertheless, we also compared the time series directly (i.e. upsampling the Bostonian dataset to 

match the length of the Brisbane data, and correcting as good as we could for the differences), and 

we report exemplary results for two regions (other regions show the same pattern), but readers 

should keep in mind that the way in which we cut and pieced together the time series from different 

regions is ad hoc. The results clearly support that the different regions also show similar brain 

response time courses, which is assuring. 

 
Figure E2. Inter-Continental ISC Comparison based on Time Series. See text for details. 
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3.4. Control Analysis: Twin-Twin ISC vs. Matched Others (Age/Sex) vs. Random Others 

Lastly, as reported in the main paper, we also compared the twin-ISC to a “control-ISC” that 

correlated data from a given viewer to another viewer the same age and sex. This was done to have 

viewers who are the same age and sex, but don’t share the twin-status except for those two 

similarity characteristics. Note that compared to the traditional pairwise (all-to-all) ISC 

comparison, the ISC among twins is also pairwise, but there are only 100 twin-pairs. Thus, we 

constructed a list of “matched pairs” in which the 100 twin_A-individuals were randomly matched 

with a matching person of the same age and gender, but not their own twin. Although we could in 

principle permute this matching procedure, the unbalanced nature of age and gender distribution 

makes this challenging. Additionally, if there are e.g. only a few twin dyads of 14-year old females, 

the possible ways of matching them are small in the first place. Thus, we simply constructed a few 

matching datasets and never found differences in the results. Moreover, as the “random others” 

comparison, we also simply randomly drew a person for every twin (see more complex analysis 

in the main paper that computes ISC across all possible pairings). This analysis thus compares ISC 

among twins against two reference groups, one group of age/sex-matched controls (rather similar), 

and one group of random others (less similar). The results, which are presented in Figure E3, show 

a clear pattern: ISC among twins is highest and the ISC of matched controls is more similar to the 

random others, and never higher than ISC among the real twins. 
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Figure E3. ISC among real twins, matched controls (matched for age and sex), and random 

others. See text for details. 

 

3.5. Control Analysis: ISC among Fraternal Twins 

Lastly, we turn to the issue of twin status. In brief, the twins scanned here were of two types - 

fraternal (dizygotic, DZ) and identical (monozygotic, MZ). Identical twins are starting our from 

the same cell and thus have a highly similar genome, whereas fraternal twins are starting from two 

eggs and are thus more like siblings, yet born at the same time and usually raised jointly. 

Monozygotic twins are thus genetically more similar than fraternal ones, yet both twins are usually 
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raised in the same shared environment. The data provided by the QTAB study are shared in two 

ways – one completely open via OpenNeuro (including fMRI data and basic information about 

age and sex, and which persons are twins). However, the QTAB also provides restricted data (with 

more in-depth genetic information, as well as other functional metrics), but for these a researcher 

needs to apply for access and comply with the imposed privacy requirements. Critically, the twin 

status, i.e. whether a pair of twins is DZ or MZ is part of the private data. Hence, we cannot publicly 

share it. However, we were still interested in exploring the potential influence of the additional 

similarity that MZ twins have over DZ ones, and we thus devised the following strategy:  Given 

that the QTAB dataset provides sex-related information, we can certainly know that if a twin pair 

includes both sexes, it must be DZ. This was the case in 24 out of 100 twin pairs. For the remaining 

76, it is overall more likely that they are MZ (because statistically there should be ca. as many 

same-gender DZ twin pairs). In any case, we can assume that in the remaining 76 twin pairs, the 

MZ twins are the majority. This gives us the opportunity to compare the more similar group of 

“likely MZ” twin pairs against the still genetically similar, yet somewhat less similar group of 

“certainly DZ”. When running this analysis, we find that indeed the “likely MZ” twin pairs exhibit 

higher ISC compared to the “certainly DZ” pairs (see Supplementary Figure E4). We note that 

given the uncertain status of the “likely MZ” group, this analysis should be interpreted with 

caution, yet it certainly underscores the main point made in the paper, i.e. that the pre-existing 

similarities among twins (vs. others, MZ twins vs. DZ twins, or even across audiences) underpin 

the shared brain responses to the same movie studied here. 
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Figure E4. ISC among twins, likely MZ twins, and certainly DZ twins. See text for details. 
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