1

Race and Social Class as Intersecting Social Categories: An Analysis of Implicit and Explicit

Attitudes

Supplemental Materials

S1: Study 1 Additional Methods and Results

Methods

Feeling Thermometer. Participants completed a feeling thermometer (Haddock, Zanna, & Esses, 1993) questionnaire for each of the four groups (HSC White, HSC Black, LSC White, LSC Black). The instructions for the feeling thermometer asked participants to imagine that the scale provided is a thermometer with higher numbers indicating warm/positive feelings and lower numbers indicating cold/negative feelings. Participants were then asked to ascribe a number from 1 (cold/negative) to 100 (warm/positive) for each of the groups based on their feelings toward that group.

Results

Implicit Association Test. We conducted post-hoc analyses to examine if the results varied by participant race (White, non-White), gender (male, female), and social class (low/low-middle, middle, upper-middle, upper). We determined whether the IAT *d*-scores differed across subgroups using one-way ANOVAs (for social class) and *t*-tests (for race and gender). We used these same analyses for all posthoc tests by participant demographic subgroup.

For the HSC-LSC Black IAT, results did not vary by race (t(65) = .63, p = .529, d = .15, 95% CI[-.35, .64]), gender (t(65) = -1.51, p = .136, d = .41, 95% CI[-.96, .14]), or social class (F(3, 59) = .42, p = .740, $\eta^2_p = .02$, 95% CI[<.01, .09]). For the HSC-LSC White IAT, results did not vary by race (t(65) = .59, p = .561, d = .16, 95% CI[-.33, .65]), gender (t(65) = -.53, p = .601, d = .16, 95% CI[-.71, .39]), or social class (F(3, 59) = .46, p = .710, $\eta^2_p = .02$, 95% CI[<.01, .09]). For the HSC White-Black IAT, results did not vary by race (t(69) = 1.89, p = .063, d = 1.65, 95% CI[1.18, 2.13]), gender (t(69) = .44, p = .664, d = .11, 95% CI[-.44, .65]), or social class (F(3, 61) = .58, p = .634, $\eta^2_p = .03$, 95% CI[<.01, .10]). For the LSC White-Black IAT,

results did not vary by race (t(69) = -.05, p = .957, d = .02, 95% CI[-.50, .45]), gender (t(69) = -.83, p = .408, d = .23, 95% CI[-.77, .32]), or social class (F(3, 61) = .64, p = .590, $\eta^2_p = .03$, 95% CI[<.01, .11]). See Table S1 for means and standard deviations.

Feeling Thermometer. We first entered the participants feeling thermometer scores into a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social class) mixed measures ANOVA to determine if there were any significant differences in responses by condition. As expected, there was not a significant interaction between race x social class x condition, F(1, 135) = .55, p = .459, $\eta^2_p < .01$, 95% CI[<.01, .05]; therefore, we dropped condition from the analyses.

A 2 (race: Black, White) x 2 (social class: HSC, LSC) repeated measures ANOVA revealed a significant main effect of race, F(1, 136) = 31.79, p < .001, $\eta^2_p = .19$, 95% CI[.08, .30], a significant main effect of social class, F(1, 136) = 13.87, p < .001, $\eta^2_p = .09$, 95% CI[.02, .19], and a significant race x social class interaction, F(1, 136) = 42.21, p < .001, $\eta^2_p = .24$, 95% CI[.12, .35]. Follow-up paired sample t-tests revealed that participants more positive feelings toward HSC Black people than HSC White people (t(137) = -6.75, p < .001, d = .63, 95% CI [.39, .86]), more positive feelings toward LSC Black people than LSC White people (t(136) = 2.12, p = .028, d = .12, 95% CI [-.12, .36]), no significant differences in feelings between HSC White people and LSC White people (t(137) = 1.32, p = .189, d = .14, 95% CI [-.10, .38]), and more positive feelings toward HSC Black people than LSC Black people (t(136) = 6.24, p < .001, d = .66, 95% CI [.43, .90]). See Table S2 for means and standard deviations.

We also conducted posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, White participants had more positive feelings than non-White participants (t(136) = 2.13, p = .035, d = .36, 95% CI [.03,

.70]), however, results did not vary by gender (t(136) = .69, p = .490, d = .13, 95% CI [-.25, .52]) or social class (F(3, 124) = 1.73, p = .165, $\eta^2_p = .04$, 95% CI[<.01, .11]). For the HSC Black people, White participants had more positive feelings than non-White participants (t(136) = 2.14, p = .034, d = .37, 95% CI [.03, .70]), however, results did not vary by gender (t(136) = -.27, p = .786, d = .05, 95% CI [-.33, .44]) or social class (F(3, 124) = 1.17, p = .322, $\eta^2_p = .03$, 95% CI[<.01, .08]). For the LSC White people, results did not vary by race (t(136) = 1.74, p = .085, t = .30, 95% CI [-.04, .63]), gender (t(136) = -.99, t = .323, t = .19, 95% CI [-.19, .58]), or social class (t = .40, t = .40, t = .756, t = .01, 95% CI[<.01, .04]). For the LSC Black people, White participants had more positive feelings than non-White participants (t = .40, t = .

Cultural Stereotypes. We first conducted a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social class) repeated measures ANOVA on the cultural stereotypes scores to determine if there was a significant difference in scores based on condition. As expected, there was not a significant race x social class x condition interaction, $F(1, 136) = .32, p = .574, \eta^2_p < .01, 95\%$ CI[<.01, .04]; therefore, we removed condition from the analyses.

We also conducted several posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, results did not vary by participant race (t(136) = -1.12, p = .264, d = .18, 95% CI [-.15, .52]) or social class (F(3, 124) = .70, p = .555, $\eta^2_p = .02$, 95% CI[<.01, .06]); however, female participants indicated more positive cultural stereotypes than males (t(136) = -1.99, p = .048, d = .38, 95% CI [<.01,

.76]). For the HSC Black people, results did not vary by participant race (t(136) = -.43, p = .671, d = .07, 95% CI [-.27, .41]), gender (t(136) = -1.55, p = .125, d = .31, 95% CI [-.07, .69]), or social class (F(3, 124) = .29, p = .836, $\eta^2_p = .01$, 95% CI[<.01, .03]). For the LSC White people, results did not vary by race (t(136) = .30, p = .671, d = .05, 95% CI [-.29, .39]), gender (t(136) = -1.22, p = .227, d = .24, 95% CI [-.14, .63]), or social class (F(3, 124) = 1.27, p = .289, $\eta^2_p = .03$, 95% CI[<.01, .09]). For the LSC Black people, results did not vary by participant race (t(136) = .62, p = .534, d = .11, 95% CI [-.22, .45]), gender (t(136) = 1.37, p = .173, d = .26, 95% CI [-.12, .65]), or social class (F(3, 124) = .40, p = .751, $\eta^2_p = .01$, 95% CI[<.01, .04]). See Table S3 for means and standard deviations.

Personal Beliefs. We first conducted a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social class) repeated measures ANOVA on the personal beliefs scores to determine if there was a significant difference in scores based on condition. As expected, there was not a significant race x social class x condition interaction, $F(1, 136) = .08, p = .775, \eta^2_p < .01, 95\%$ CI[<.01, .02]; therefore, we removed condition from the analyses.

We also conducted several posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, results did not vary by participant race (t(136) = -1.15, p = .253, d = .21, 95% CI [-.13, .54]), gender (t(136) = .84, p = .404, d = .16, 95% CI [.22, .54]), or social class (F(3, 124) = .70, p = .555, $\eta^2_p = .02$, 95% CI[<.01, .06]). For the HSC Black people, results did not vary by participant race (t(136) = -1.15, p = .882, d = .03, 95% CI [-.31, .36]), gender (t(136) = -1.37, p = .173, d = .28, 95% CI [-.11, .66]), or social class (F(3, 124) = .29, p = .836, $\eta^2_p = .01$, 95% CI[<.01, .03]). For the LSC White people, results did not vary by race (t(136) = .01, p = .990, d < .01, 95% CI [-.34, .34]),

gender (t(136) = -1.12, p = .267, d = .21, 95% CI [-.17, .60]), or social class (F(3, 124) = 1.27, p = .289, $\eta^2_p = .03$, 95% CI[<.01, .09]). For the LSC Black people, results did not vary by participant race (t(136) = .48, p = .635, d = .08, 95% CI [-.26, .41]) or social class (F(3, 124) = .40, p = .751, $\eta^2_p = .01$, 95% CI[<.01, .04]); however, females had more positive personal beliefs than males (t(136) = -2.25, p = .026, d = .44, 95% CI [.05, .82]). See Table S3 for means and standard deviations.

Correlational Analyses. For correlational analyses between all measures, see Tables S4 and S5.

S2: Study 2 Additional Methods and Results

Methods

Feeling Thermometer. Participants completed the same feeling thermometer questionnaire (Haddock et al., 1993) as in Study 1.

Results

Affective Misattribution Procedure. We conducted posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, results did not vary by race (t(133) = 1.63, p = .105, d = .31, 95% CI[-.03, .65]), gender (t(133) = .49, p = .627, d = .08, 95% CI[-.33, .49]), or social class (F(3, 123) = .80, p = .496, $\eta^2_p = .02$, 95% CI[-.01, .07]). For the HSC Black people, results did not vary by race (t(133) = -.01, p = .991, d < .01, 95% CI[-.34, .34]), gender (t(133) = -.04, p = .972, d < .01, 95% CI[-.41, .41]), or social class (F(3, 123) = .60, p = .616, $\eta^2_p = .01$, 95% CI[<.01, .06]). For the LSC White people, White participants had more positive attitudes than non-White participants (t(133) = 2.00, p = .048, d = .32, 95% CI[-.02, .66]); however, results did not vary by participant gender (t(133) = 1.11, p = .270, d = .22, 95% CI[-.19, .63]) or social class (F(3, 123) = 1.19, p = .316, $\eta^2_p = .03$, 95% CI[<.01, .09]). For the LSC Black people, results did not vary by participant race (t(133) = 1.50, p = .135, d = .24, 95% CI[-.10, .65]), gender (t(133) = -.28, t = .777, t = -.06, 95% CI[-.35, .47]), or social class (t = .24, 95% CI[-.10, .65]), gender (t = .24, 95% CI[-.01, .04]). See Table S6 for means and standard deviations.

Feeling Thermometer. A 2 (race: Black, White) x 2 (social class: HSC, LSC) repeated measures ANOVA revealed a nonsignificant main effect of race, F(1, 146) = 62.78, p < .001, $\eta^2_p = .30$, 95% CI[.18, .41], a significant main effect of social class, F(1, 146) = 2.51, p = .115, $\eta^2_p = .115$

.02, 95% CI[<.01, .08], and a significant race x social class interaction, F(1, 146) = 41.44, p < .001, $\eta_p^2 = .22$, 95% CI[.11, .33].

Follow-up paired sample t-tests revealed that participants had more positive feelings toward LSC White people than HSC White people (t(146) = -4.13, p < .001, d = .39, 95% CI [.16, .62]), no difference in feelings between HSC Black and LSC Black people (t(146) = 1.60, p = .112, d = .14, 95% CI [-.09, .37], more positive feelings toward HSC Black than HSC White people (t(146) = -8.64, p < .001, d = .77, 95% CI [.54, 1.00]), and more positive feelings toward LSC Black people than LSC White people (t(146) = -4.17, p < .001, d = .26, 95% CI [.03, .49]). See Table S2 for means and standard deviations.

We also conducted posthoc analyses to examine if the results varied by participant race, social class, or gender. In particular, for the HSC White people, White participants had more positive feelings than non-White participants (t(145) = 2.34, p = .021, d = .39, 95% CI[.06, .71]), however, results did not vary by participant gender (t(145) = 1.81, p = .072, d = .36, 95% CI[-.03, .75]) or social class (F(3, 134) = .25, p = .860, $\eta^2_p = .01$, 95% CI[<.01, .03]). For the HSC Black people, results did not vary by participant race (t(145) = -1.74, p = .084, d = .29, 95% CI[-.04, .62]), gender (t(145) = .52, p = .606, d = .10, 95% CI[-.29, .49]), or social class (F(3, 134) = 1.88, p = .136, $\eta^2_p = .04$, 95% CI[<.01, .11]). For the LSC White people, results did not vary by race (t(145) = .74, p = .464, d = .12, 95% CI[-.21, .45]), gender (t(145) = .99, p = .323, d = .20, 95% CI[-.19, .59]), or social class (F(3, 134) = .87, p = .459, $\eta^2_p = .02$, 95% CI[<.01, .07]). For the LSC Black people, results did not vary by participants race (t(145) = -.62, p = .536, d = .10, 95% CI[-.22, .43]), gender (t(145) = -.81, p = .417, d = .16, 95% CI[-.23, .55]), or social class (F(3, 134) = .27, p = .848, $\eta^2_p = .38$, 95% CI[.24, .47]). See Table S6 for means and standard deviations.

Cultural Stereotypes. We conducted several posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, results did not vary by participant race (t(145) = .65, p = .517, d = .10, 95% CI[-.23, .43]), gender (t(145) = .12, p = .905, d = .03, 95% CI[-.37, .42]), or social class $(F(3, 134) = .90, p = .441, \eta^2_p)$ = .02, 95% CI[<.01, .07]). For the HSC Black people, White participants had more positive cultural stereotypes than non-White participants (t(145) = 2.81, p = .006, d = .47, 95% CI[.15, .80]), but results did not vary by participant gender (t(145) = 1.83, p = .069, d = .37, 95% CI[-.02, .76]) or social class (F(3, 134) = 1.29, p = .281, $\eta^2_p = .03$, 95% CI[<.01, .08]). For the LSC White people, results did not vary by participant race (t(144) = -.48, p = .633, d = .08, 95%) CI[-.25, .41]), gender (t(144) = .04, p = .972, d = .01, 95% CI[-.38, .40]), or social class (F(3, 133) =2.06, p = .108, $\eta^2_p = .04$, 95% CI[<.01, .11]). For the LSC Black people, White participants had more positive cultural stereotypes than non-White participants (t(145) = 2.19, p = .030, d = .35, 95% CI[.02, .68]); however, results did not vary by participant gender (t(145) = -.09, p = .932, d= .02, 95% CI[-.37, .42]) or social class ($F(3, 134) = .78, p = .506, \eta^2_p = .02, 95\%$ CI[<.01, .06]). See Table S6 for means and standard deviations.

Personal Beliefs. We conducted several posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, White participants had more positive personal beliefs than non-White participants (t(145) = 2.82, p = .005, d = .46, 95% CI[.13, .79]); however, results did not vary by participant gender (t(145) = 1.90, p = .060, d = .37, 95% CI[-.02, .76]) or social class (F(3, 134) = .79, p = .500, $\eta^2_p = .02$, 95% CI[<.01, .06]). For the HSC Black people, results did not vary by participant race (t(145) = .43, p = .669, d = .07, 95% CI[-.26, .40]), gender (t(145) = 1.28, p = .202, t = .26, 95% CI[-.13, .65]), or social class (t = .46, 134) = .90, t = .446, t = .46, t = .46

people, White participants had more positive personal beliefs than non-White participants (t(145) = 2.82, p = .005, d = .42, 95% CI[.09, .75]); however, results did not vary by participant gender (t(145) = .36, p = .72, d = .08, 95% CI[-.31, .47]) or social class (F(3, 134) = 1.36, p = .258, η^2_p = .03, 95% CI[<.01, .09]). For the LSC Black people, results did not vary by participant race (t(145) = .96, p = .337, d = .17, 95% CI[-.16, .49]), gender (t(145) = -1.05, p = .296, d = .21, 95% CI[-.18, .60]), or social class (F(3, 134) = .19, p = .904, η^2_p < .01, 95% CI[<.01, .02]). See Table S6 for means and standard deviations.

Correlational Analyses. For correlational analyses between all measures by conditions, see Tables S7 and S8.

S3: Study 3 Additional Methods and Results

Methods

Feeling Thermometer. Participants completed the same feeling thermometer questionnaire (Haddock et. al, 1993) as in Study 1.

Results

Implicit Association Test. We conducted posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC-LSC Black IAT, results did not vary by participant race (t(95) = -.55, p = .583, d = .12, 95% CI[-.28, .53]), gender (t(93) = -.55, p = .583, d = .12, 95% CI[-.28, .53]).07, p = .943, d = .03, 95% CI[-.62, .56]), or social class $(F(3, 91) = .95, p = .422, \eta^2_p = .03, 95\%$ CI[<.01, .10]). For the HSC-LSC White IAT, results did not vary by race (t(95) = -1.17, p = .247,d = .23, 95% CI[-.18, .63]), gender (t(93) = 1.52, p = .133, d = .46, 95% CI[-.13, 1.05]), or social class $(F(3, 91) = .40, p = .754, \eta^2_p = .01, 95\% \text{ CI}[<.01, .06])$. For the HSC White-Black IAT, White participants, as compared to non-White participants, had more positive attitudes toward HSC White than HSC Black people (t(82) = 2.56, p = .012, d = .59, 95% CI[.13, 1.04]); however, there was no significant difference based on participant gender (t(82) = .65, p = .516, d= .20, 95% CI[-.42, .82]) or social class (F(3, 77) = 1.72, p = .170, $\eta^2_p = .06$, 95% CI[<.01, .16]). For the LSC White-Black IAT, White participants, as compared to non-White participants, had more positive attitudes toward LSC White than LSC Black people (t(83) = 3.57, p = .001, d =.83, 95% CI[.37, 1.28]); however, there was no significant difference based on participant gender (t(83) = -.32, p = .751, d = .10, 95% CI[-.52, .72]) or social class $(F(3, 78) = .48, p = .697, \eta^2_p = .697, \eta^$.02, 95% CI[<.01, .07]). See Table S9 for means and standard deviations.

Affective Misattribution Procedure. We first entered the participants AMP scores into a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social

class) repeated measures ANOVA to determine if there were any significant differences in responses by condition. As expected, there was not a significant interaction between race x social class x condition, F(1, 172) = .09, p = .767, $\eta^2_p < .01$, 95% CI[<.01, .03]; therefore, we dropped condition from the analyses.

We also conducted posthoc analyses to examine if the results varied by participant race, social class, or gender. In particular, for the HSC White people, results did not vary by participant race (t(188) = 1.06, p = .289, d = .18, 95% CI[-.12, .47]), gender (t(186) = -1.07, p = .286, d = .21, 95% CI[-.22, .64]), or social class (F(3, 183) = 1.05, p = .371, $\eta^2_p = .02$, 95% CI[<.01, .06]). For the HSC Black people, results did not vary by race (t(188) = -.73, p = .466, d = .10, 95% CI[-.20, .39]), gender (t(186) = .62, p = .538, d = .13, 95% CI[-.30, .56]), or social class (F(3, 183) = .35, p = .792, $\eta^2_p < .01$, 95% CI[<.01, .03]). For the LSC White people, results did not vary by participant race (t(188) = .88, p = .381, d = .13, 95% CI[-.17, .42]), gender (t(186) = .19, p = .851, d = .05, 95% CI[-.38, .48]), or social class (F(3, 183) = 1.88, p = .135, $\eta^2_p = .03$, 95% CI[<.01, .08]). For the LSC Black people, results did not vary by participant race (t(188) = .04, p = .969, d < .01, 95% CI[-.30, .30]), gender (t(186) = 1.12, p = .263, d = .24, 95% CI[-.19, .68]), or social class (F(3, 183) = 1.39, p = .246, $\eta^2_p = .02$, 95% CI[<.01, .07]). See Table S10 for means and standard deviations.

Feeling Thermometer. We first entered the participants feeling thermometer scores into a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social class) mixed measures ANOVA to determine if there were any significant differences in responses by condition. As expected, there was not a significant interaction between race x social class x condition, F(1, 180) = .61, p = .436, $\eta^2_p < .01$, 95% CI[<.01, .04]; therefore, we dropped condition from the analyses.

A 2 (race: Black, White) x 2 (social class: HSC, LSC) repeated measures ANOVA revealed a significant main effect of social class, F(1, 198) = 111.81, p < .001, $\eta^2_p = .36$, 95% CI[.26, .45], a significant main effect of race, F(1, 198) = 71.36, p < .001, $\eta^2_p = .27$, 95% CI[.17, .36], and a significant race x social class interaction, F(1, 198) = 65.69, p < .001, $\eta^2_p = .25$, 95% CI[.15, .34].

Follow-up paired sample t-tests revealed that participants have more positive feelings toward HSC White people than LSC White people (t(198) = 5.68, p < .001, d = .51, 95% CI [.31, .71]), more positive feelings toward HSC Black people than LSC Black people (t(198) = 14.40, p < .001, d = 1.24, 95% CI [1.05, 1.44], more positive feelings toward HSC Black people than HSC White people (t(198) = -9.77, p < .001, d = .83, 95% CI [.64, 1.03]), and more positive feelings toward LSC Black people than LSC White people (t(198) = -3.20, p = .002, d = .15, 95% CI [-.04, .35]). See Table S2 for means and standard deviations.

We also conducted posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, White participants had more positive feelings than non-White participants (t(197) = 2.25, p = .025, d = .33, 95% CI[.04, .61]) and results varied by participant social class (F(3, 190) = 2.72, p = .046, $\eta^2_p = .04$, 95% CI[<.01, .10]); however, results did not vary by participant gender (t(195) = .11, p = .912, d = .02, 95% CI[-.38, .42]). For the HSC Black people, results did not vary by participant race (t(197) = -.45, p = .652, d = .07, 95% CI[-.22, .35]), gender (t(195) = -.67, p = .502, d = .14, 95% CI[-.27, .54]), or social class (F(3, 190) = 1.56, p = .202, $\eta^2_p = .02$, 95% CI[<.01, .07]). For the LSC White people, White participants had more positive feelings than non-White participants (t(197) = 2.89, p = .004, d = .42, 95% CI[.13, .71]), but results did not vary by participant gender (t(195) = -.82, t = .004, t = .005, t =

CI[<.01, .05]). For the LSC Black people, results did not vary by participant race (t(197) = 1.35, p = .179, d = .20, 95% CI[-.09, .48]), gender (t(195) = .31, p = .760, d = .06, 95% CI[-.34, .46]), or social class (F(3, 190) = 1.30, p = .275, $\eta^2_p = .02$, 95% CI[<.01, .06]). See Table S10 for means and standard deviations.

Cultural Stereotypes. We first conducted a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social class) repeated measures ANOVA on the cultural stereotypes scores to determine if there was a significant difference in scores based on condition. As expected, there was not a significant race x social class x condition interaction, $F(1, 180) = 2.39, p = .124, \eta^2_p = .01, 95\%$ CI[<.01, .06]; therefore, we removed condition from the analyses.

We also conducted several posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, results did not vary by participant race (t(197) = -.28, p = .781, d = .03, 95% CI[-.25, .32]) or gender (t(195) = -.67, p = .503, d = .14, 95% CI[-.26, .54]); however, results varied by social class (F(3, 190) = 2.72, p = .046, $\eta^2_p = .04$, 95% CI[<.01, .10]). For the HSC Black people, results did not vary by participant race (t(197) = .78, p = .435, d = .11, 95% CI[-.18, .39]), gender (t(195) = -.50, p = .617, d = .11, 95% CI[-.30, .51]), or social class (F(3, 190) = 1.06, p = .366, $\eta^2_p < .01$, 95% CI[<.01, .05]). For the LSC White people, results did not vary by race (t(197) = .53, p = .594, d = .08, 95% CI[-.21, .36]), gender (t(195) = -1.24, p = .218, d = .24, 95% CI[-.16, .65]), or social class (F(3, 190) = .20, p = .895, $\eta^2_p < .01$, 95% CI[<.01, .02]). For the LSC Black people, results did not vary by participant race (t(197) = .12, p = .908, d = .01, 95% CI[-.28, .30]) or gender (t(195) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, p = .385, d = .18, 95% CI[-.22, .58]); however, results varied by social class (F(3, 190) = .87, P = .385, P

190) = 2.98, p = .033, $\eta^2_p = .04$, 95% CI[<.01, .10]). See Table S10 for means and standard deviations.

Personal Beliefs. We first conducted a 2 (race: Black, White) x 2 (social class: HSC, LSC) x 2 (condition: compare race, compare social class) repeated measures ANOVA on the personal beliefs scores to determine if there was a significant difference in scores based on condition. As expected, there was not a significant race x social class x condition interaction, $F(1, 190) = .26, p = .208, \eta^2_p < .01, 95\%$ CI[<.01, .03]; therefore, we removed condition from the analyses.

We also conducted several posthoc analyses to examine if the results varied by participant race, gender, or social class. In particular, for the HSC White people, results did not vary by participant race (t(197) = 1.82, p = .070, d = .27, 95% CI[-.02, .55]) or gender (t(195) = .19, p = .853, d = .04, 95% CI[-.36, .44]); however, results varied by social class (F(3, 190) = 3.60, p = .015, $\eta^2_p = .05$, 95% CI[<.01, .12]). For the HSC Black people, results did not vary by participant race (t(197) = .42, p = .675, d = .06, 95% CI[-.22, .35]) or gender (t(195) = .82, p = .416, d = .17, 95% CI[-.23, .57]); however, results varied by social class (F(3, 190) = 2.75, p = .044, $\eta^2_p = .04$, 95% CI[<.01, .10]). For the LSC White people, results did not vary by race (t(197) = 1.48, p = .141, d = .22, 95% CI[-.07, .50]), gender (t(195) = .28, p = .781, d = .06, 95% CI[-.34, .46]), or social class (F(3, 190) = .23, p = .875, $\eta^2_p < .01$, 95% CI[<.01, .02]). For the LSC Black people, results did not vary by participant race (t(197) = .36, p = .722, d = .05, 95% CI[-.24, .33]), gender (t(195) = -.35, p = .724, d = .07, 95% CI[-.33, .47]), or social class (F(3, 190) = .49, p = .688, $\eta^2_p = .01$, 95% CI[<.01, .03]). See Table S10 for means and standard deviations.

Correlational Analyses. For correlational analyses between all measures by conditions, see Tables S11-S14.

References

Haddock, G., Zanna, M.P., Esses, V.M. (1993) Assessing the structure of prejudicial attitudes:

The case of attitudes toward homosexuals. *Journal of Personality and Social Psychology*,

65(6), 1105-1118.

Table S1. Study 1: Means (and Standard Deviations) for IAT Scores by Demographic Sub-Groups

	n	HSC-LSC Black IAT	HSC-LSC White IAT	n	HSC White-Black IAT	LSC White-Black IAT
Race						
White	38	.78 (.45) ^a	.81 (.38) ^a	36	.14 (.39) ^a	.39 (.38) ^a
Non-	29	.72 (.36) ^a	.75 (.37) ^a	35	06 (.50) ^a	.40 (.42) ^a
White						
Gender						
Male	18	.63 (.49) ^a	.74 (.42) ^a	18	.08 (.35) ^a	.33 (.36) ^a
Female	49	.80 (.38) ^a	.80 (.36) ^a	53	.03 (.49) ^a	.42 (.41) ^a
Social Class						
Low/Low Middle	17	.67 (.31) ^a	.74 (.31) ^a	19	.06 (.44) ^a	.43 (.36) ^a
Middle	15	.83 (.36) ^a	.75 (.29) ^a	18	04 (.55) ^a	.48 (.44) ^a
Upper-Middle	20	.73 (.29) ^a	.80 (.41) ^a	14	09 (.40) ^a	.32 (.44) ^a

Upper $_{11}$.77 (.70)^a .89 (.47)^a 14 .11 (.43)^a .32 (.40)^a

Notes. Superscript comparisons are within variable and within subgroup; Values that share the same superscript did not differ from each other (t-test p > .05), values with different superscripts differed from each other (t-test p < .05).

Table S2. Feeling Thermometer Means (M) and Standard Deviations (SD)

	Study 1	Study 2	Study 3
	M(SD)	M(SD)	M (SD)
HSC White	59.99 (25.56)	49.35 (24.12)	59.81 (24.24)
HSC Black	73.82 (17.92)	67.21 (22.13)	77.18 (16.79)
LSC White	56.41 (25.56)	58.29 (21.86)	47.47 (24.16)
LSC Black	59.47 (24.78)	64.10 (23.07)	51.22 (24.25)

Notes. Study 1: n = 138; Study 2: n = 147; Study 3: n = 199.

Table S3. Study 1: Means (and Standard Deviations) for Explicit Measure Scores by Demographic Sub-Groups

		Feeling Thermometer						Cultural S	Stereotype	es		Personal Beliefs				
	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC	
		White	Black	White	Black		White	Black	White	Black		White	Black	White	Black	
Race																
White	74	64.24 ^a	76.77ª	59.68ª	63.50 ^a	74	5.49 ^a	5.51 ^a	3.59 ^a	3.26 ^a	74	5.02ª	5.60 ^a	3.78^{a}	4.01 ^a	
		(23.75)	(16.16)	(22.46)	(22.58)		(.85)	(.80)	(.78)	(.83)		(.79)	(.73)	(.73)	(.84)	
Non-	64	55.06 ^b	70.33 ^b	52.63ª	54.75 ^b	64	5.65 ^a	5.57 ^a	3.55a	3.16 ^a	64	5.19 ^a	5.62a	3.78^{a}	3.94^{a}	
White		(26.85)	(19.19)	(25.25)	(26.55)		(.89)	(.90)	(.89)	(.92)		(.86)	(.87)	(.96)	(.98)	
Gender																
Male	36	62.53ª	73.08ª	53.00 ^a	57.69 ^a	36	5.32ª	5.35 ^a	3.72ª	3.38ª	36	5.00^{a}	5.45 ^a	3.65ª	3.69^{a}	
		(21.65)	(18.76)	(22.27)	(25.66)		(.85)	(.89)	(.86)	(.84)		(.68)	(.85)	(.85)	(1.00)	
Female	102	59.09ª	74.03ª	57.61ª	60.11ª	102	5.65 ^b	5.61ª	3.52ª	3.15 ^a	102	5.13 ^a	5.67ª	3.83ª	4.08 ^b	
		(26.85)	(17.61)	(24.53)	(24.56)		(.87)	(.82)	(.81)	(.88)		(.86)	(.77)	(.84)	(.85)	
Social Class																
Low/Low-	36	52.67ª	69.64ª	54.33ª	56.33 ^a	36	5.72ª	5.63a	3.74 ^a	3.30 ^a	36	5.13 ^a	5.70 ^a	3.74ª	3.93ª	
Middle		(23.16)	(17.76)	(24.65)	(25.09)		(.84)	(.89)	(.90)	(.91)		(.77)	(.78)	(.74)	(.86)	
NA: 14	33	66.21 ^b	75.55ª	54.64ª	56.00 ^a	33	5.65 ^a	5.52ª	3.63	3.08ª	33	5.40 ^{ab}	5.71ª	3.81ª	3.88ª	
Middle		(25.10)	(19.07)	(24.48)	(23.04)		(.81)	(.83)	(1.05)	(.93)		(.85)	(.76)	(1.11)	(1.14)	

Upper-	34	61.85 ^{ab}	77.32ª	59.18 ^a	61.71ª	34	5.54 ^a	5.52ª	3.36^{a}	3.13 ^a	34	5.08 ^{ab}	5.62ª	3.79ª	3.94ª
Middle		(27.08)	(16.60)	(22.53)	(25.22)		(.85)	(.78)	(.66)	(.89)		(.81)	(.79)	(.73)	(.80)
Upper	25	61.36 ^{ab}	74.32 ^a	58.80 ^a	63.84ª	25	5.42ª	5.43 ^a	3.58 ^a	3.20^{a}	25	4.81 ^b	5.45 ^a	3.69 ^a	4.16 ^a
Оррег		(26.91)	(18.67)	(22.05)	(26.05)		(.93)	(.87)	(.84)	(.68)		(.71)	(.83)	(.80)	(.89)

Notes. Superscript comparisons are within variable and within subgroup; Values that share the same superscript did not differ from each other (t-test p > .05), values with different superscripts differed from each other (t-test p < .05).

Table S4. Study 1: Correlations between IATs and Explicit Measures

	Condition 1 (Com	npare Social Class)	Condition 2 (C	Compare Race)
	HSC-LSC Black IAT	HSC-LSC White IAT	HSC White-Black IAT	LSC White-Black IAT
FT: HSC White	.26*	.09	.12	.07
FT: HSC Black	.10	.04	16	03
FT: LSC White	.07	.28*	.06	.09
FT: LSC Black	11	.20	.10	.04
CS: HSC White	.07	08	11	01
CS: HSC Black	.06	06	.05	.06
CS: LSC White	.11	.04	14	04
CS: LSC Black	15	08	.02	.03
PB: HSC White	.12	10	.08	.05
PB: HSC Black	.05	18	04	.02

PB: LSC White	07	.10	<.01	.04
PB: LSC Black	14	06	.08	.06

Notes. FT = Feeling Thermometer, CS = Cultural Stereotype, PB = Personal Beliefs; *p < .05, **p < .01; condition 1: n = 67, condition 2: n = 71

Table S5. Study 1: Correlations Between Explicit Measures

	FT:	FT:	FT:	FT:	CS:	CS:	CS:	CS:	PB:	PB:	PB:	PB:
	HSC	HSC	LSC	LSC	HSC	HSC	LSC	LSC	HSC	HSC	LSC	LSC
	White	Black	White	Black	White	Black	White	Black	White	Black	White	Black
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1												
2	.43***											
3	.17*	.26**										

4	15	.24**	.83***									
5	.03	.29***	02	06								
6	.11	.15	.05	.02	.47***							
7	<.01	.09	01	<.01	08	19*						
8	<.01	14	04	<01	55***	07	.49***					
9	.31***	.21*	01	21*	.54***	.51***	.09	10				
10	.07	.35***	.01	03	.67***	.54***	.03	23**	.70***			
11	17*	04	.27**	.30***	07	13	.37***	.33***	16	09		
12	19*	<01	.16	.26**	<.01	03	.23**	.22*	16	.06	.74***	

Notes. $FT = Feeling\ Thermometer,\ CS = Cultural\ Stereotype,\ PB = Personal\ Beliefs;\ *p < .05,\ **p < .01,\ ***p < .001;\ n = 138$

Table S6. Study 2: Means (and Standard Deviations) for Explicit Measure Scores by Demographic Sub-Groups

	AMP						Feeling Thermometer				Cultural Stereotypes				Personal Beliefs					
	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC
		White	Black	White	Black		White	Black	White	Black		White	Black	White	Black		White	Black	White	Black
Race																				
White	73	04ª	02ª	14ª	10ª	80	53.55ª	64.33 ^a	59.50 ^a	63.01 ^a	80	5.27 ^a	5.53 ^a	3.56ª	3.32ª	80	4.96 ^a	5.42ª	4.09^{a}	4.21a
		(.22)	(.25)	(.27)	(.32)		(21.96)	(20.49)	(19.92)	(20.07)		(.68)	(.68)	(.75)	(.73)		(.65)	(.81)	(.81)	(.86)
Non-	62	12ª	02ª	24 ^b	18 ^b	67	44.34 ^b	70.66ª	56.84ª	65.39a	67	5.19 ^a	5.15 ^b	3.63ª	3.04 ^b	67	4.64 ^b	5.36a	3.73 ^b	4.06^{a}
White		(.30)	(.22)	(.35)	(.35)		(25.76)	(23.64)	(24.04)	(26.31)		(.89)	(.93)	(1.05)	(.87)		(.74)	(.93)	(.91)	(.96)
Gender																				
Male	30	06ª	02ª	13ª	15ª	33	56.00ª	68.97ª	61.61ª	61.21ª	33	5.25 ^a	5.59ª	3.60^{a}	3.18 ^a	33	5.02ª	5.56a	3.98ª	4.00^{a}
		(.27)	(.28)	(.32)	(.35)		(25.21)	(20.30)	(23.69)	(27.54)		(.75)	(.67)	(1.02)	(.83)		(.73)	(.85)	(1.03)	(.93)
Female	10	08ª	02ª	20ª	13ª	114	47.43ª	66.70ª	57.32ª	64.93ª	114	5.23 ^a	5.29ª	3.59 ^a	3.20ª	114	4.76ª	5.34 ^a	3.91ª	4.19 ^a
	5	(.26)	(.22)	(.31)	(.33)		(23.57)	(22.69)	(21.31)	(21.67)		(.79)	(.85)	(.86)	(.80)		(.69)	(.86)	(.83)	(.90)
Social																				
Class																				
Low/	34	10ª	04ª	24ª	17ª	39	50.97ª	74.18 ^a	60.82ª	66.69ª	39	5.35 ^a	5.17 ^a	3.85 ^a	3.22ª	39	4.97ª	5.51ª	4.14 ^a	4.22a
Low-		(.33)	(.24)	(.38)	(.38)		(24.24)	(20.99)	(22.36)	(24.51)		(.92)	(1.03)	(.95)	(.82)		(.79)	(.84)	(1.01)	(1.18)
Middle																				

36.111	34	09a	05ª	22ª	17ª	35	47.43 ^a	63.23 ^{ab}	59.97ª	62.54ª	35	5.32a	5.39 ^a	3.57 ^{ab}	3.28 ^a	35	4.87^{a}	5.19 ^a	3.78^{a}	4.16 ^a
Middle		(.24)	(.23)	(.30)	(.35)		(26.84)	(23.07)	(23.02)	(24.93)		(.64)	(.71)	(.91)	(.84)		(.64)	(.94)	(.74)	(.78)
Upper-	33	07ª	.01ª	17ª	11ª	36	50.69ª	65.00 ^{ab}	53.22ª	62.94 ^a	36	5.15 ^a	5.41 ^a	3.34^{b}	3.03 ^a	36	4.73ª	5.45 ^a	3.84 ^a	4.07ª
Middle		(.25)	(.24)	(.30)	(.30)		(20.46)	(22.89)	(21.82)	(20.55)		(.67)	(.73)	(.74)	(.71)		(.62)	(.77)	(.76)	(.84)
T.T.	26	01a	.02ª	10ª	10ª	28	52.50 ^a	64.68 ^b	58.82ª	62.82a	28	5.09 ^a	5.56a	3.60 ^{ab}	3.28 ^a	28	4.78 ^a	5.41ª	4.01 ^a	4.09ª
Upper		(.17)	(.20)	(.25)	(.31)		(25.82)	(20.82)	(21.18)	(22.41)		(.81)	(.70)	(.91)	(.82)		(.79)	(.90)	(.81)	(.77)

Notes. Superscript comparisons are within variable and within subgroup; Values that share the same superscript did not differ from each other (t-test p > .05), values with different superscripts differed from each other (t-test p < .05).

Table S7. Study 2: Correlations between AMP Scores and Explicit Measures

	HSC White AMP Score	HSC Black AMP Score	LSC White AMP Score	LSC Black AMP Score
FT: HSC White	.17*	10	.15	.03
FT: HSC Black	<.01	.05	.03	.11
FT: LSC White	.05	03	.90	.02
FT: LSC Black	03	.06	.03	.14
CS: HSC White	04	10	03	02
CS: HSC Black	.04	.08	.03	01
CS: LSC White	.15	.08	.18*	.16
CS: LSC Black	.15	.90	.10	.04
PB: HSC White	.11	.01	.07	.03
PB: HSC Black	.04	.07	01	.04
PB: LSC White	.20*	.09	.16	.14

PB: LSC Black -.07 .09 -.02 .16

Note. $FT = Feeling\ Thermometer,\ CS = Cultural\ Stereotype,\ PB = Personal\ Beliefs;\ *p < .05,\ **p < .01;\ n = 135.$

Table S8. Study 2: Correlations Between Explicit Measures

	FT:	FT:	FT:	FT:	CS:	CS:	CS:	CS:	PB:	PB:	PB:	PB:
	HSC	HSC	LSC	LSC	HSC	HSC	LSC	LSC	HSC	HSC	LSC	LSC
	White	Black	White	Black	White	Black	White	Black	White	Black	White	Black
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1												
2	.42***											
3	.35***	.30***										
4	.13	.45***	.72***									
5	.15	.30***	.05	.02								
6	.17*	.18*	01	03	.14							
7	.05	.09	.21*	.17*	.26**	23**						
8	.12	17*	.06	.04	42***	.14	.34***					

9	.40***	.28**	.14	04	.54***	.31***	.23**	.01				
10	.06	.36***	06	.05	.48***	.35***	<.01	27**	.45***			
11	.07	03	.38***	.24**	.27**	14	.54***	.16	.32***	01		
12	07	04	.17*	.29***	.10	02	.22**	.27**	<01	.15	.51***	

Note. $FT = Feeling\ Thermometer,\ CS = Cultural\ Stereotype,\ PB = Personal\ Beliefs;\ *p < .05,\ **p < .01,\ ***p < .001;\ n = 147.$

Table S9. Study 3: Means (and Standard Deviations) for IAT Scores by Demographic Sub-Groups

		n	HSC-LSC Black IAT	HSC-LSC White IAT	n	HSC White-Black IAT	LSC White-Black IAT
Race							
	White	56	.53 (.34) ^a	.35 (.30) ^a	55	.24 (.50) ^a	.53 (.24) ^a
	Non-	41	.57 (.30) ^a	.43 (.42) ^a	29	04 (.43) ^b	.31 (.31) ^b
	White						

Gender

Male	13	.55 (.36) ^a	.53 (.39) ^a	12	.23 (.53) ^a	.43 (.30) ^a
Female	82	.56 (.31) ^a	.37 (.34) ^a	72	.13 (.49) ^a	.46 (.29) ^a
Social Class						
Low/Low Middle	23	.61 (.37) ^a	.38 (.38) ^a	21	.03 (.54) ^a	.40 (.31) ^a
Middle	37	.50 (.27) ^a	.38 (.35) ^a	26	.14 (.42) ^{ab}	.48 (.27) ^a
Upper-Middle	19	.62 (.33) ^a	.36 (.37) ^a	21	.35 (.41) ^b	.49 (.24) ^a
Upper	16	.49 (.32) ^a	.48 (.27) ^a	13	.11 (.56) ^{ab}	.43 (.35) ^a

Notes. Superscript comparisons are within variable and within subgroup; Values that share the same superscript did not differ from each other (t-test p > .05), values with different superscripts differed from each other (t-test p < .05).

Table S10. Study 3: Means (and Standard Deviations) for Explicit Measure Scores by Demographic Sub-Groups

	AMP					Feeling Thermometer				Cultural Stereotypes				es	Personal Beliefs					
-	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC	n	HSC	HSC	LSC	LSC
		White	Black	White	Black		White	Black	White	Black		White	Black	White	Black		White	Black	White	Black
Race																				
White	119	04ª	05ª	24ª	24ª	121	62.89a	76.74ª	51.36ª	53.07ª	121	5.22ª	5.35 ^a	3.38^{a}	3.15 ^a	121	4.85a	5.47ª	3.93ª	4.16 ^a
		(.28)	(.33)	(.39)	(.41)		(22.76)	(15.94)	(22.73)	(23.08)		(.84)	(.87)	(.87)	(.87)		(.73)	(.75)	(.80)	(.88)
Non-	71	09ª	02ª	29ª	24ª	78	55.04 ^b	77.85ª	41.42 ^b	48.33a	78	5.25 ^a	5.25 ^a	3.31 ^a	3.14 ^a	78	4.65a	5.42ª	3.75 ^a	4.12 ^a
White		(.29)	(.28)	(.41)	(.44)		(25.81)	(18.13)	(25.20)	(25.83)		(.91)	(1.03)	(.93)	(1.04)		(.78)	(.81)	(.86)	(.82)
Gender																				
Male	24	12ª	01ª	25ª	16ª	28	60.46a	75.43 ^a	44.21ª	52.75 ^a	28	5.14 ^a	5.23 ^a	3.16 ^a	3.29 ^a	28	4.76a	5.35 ^a	3.90ª	4.09 ^a
		(.32)	(.33)	(.37)	(.41)		(24.48)	(15.00)	(23.70)	(25.26)		(.66)	(1.02)	(.90)	(1.09)		(.68)	(.73)	(.89)	(.94)
Female	164	06ª	05ª	27ª	26ª	169	59.92ª	77.73ª	48.24ª	51.24ª	169	5.26 ^a	5.33a	3.38^{a}	3.12 ^a	169	4.79ª	5.48 ^a	3.85 ^a	4.15 ^a
		(.28)	(.30)	(.39)	(.41)		(24.33)	(17.01)	(24.18)	(24.02)		(.90)	(.93)	(.90)	(.91)		(.77)	(.78)	(.82)	(.85)
Social																				
Class																				
Low/	47	02ª	02ª	16ª	14ª	49	53.41 ^a	73.04 ^a	44.53 ^a	49.12ª	49	4.96ª	5.12 ^a	3.40^{a}	3.40^{a}	49	4.51a	5.20 ^a	3.92ª	4.24 ^a
Low-		(.33)	(.34)	(.44)	(.45)		(25.15)	(18.98)	(25.62)	(27.08)		(.83)	(.91)	(.89)	(1.00)		(.75)	(.77)	(.86)	(.88)
Middle																				

	64	11ª	05ª	33 ^b	30ª	68	58.29 ^{ab}	79.57 ^b	50.85 ^a	55.09ª	68	5.40^{b}	5.33 ^a	3.35 ^a	2.90 ^b	68	4.78 ^{ab}	5.51 ^b	3.81a	4.16 ^a
Middle		(.27)	(.32)	(.37)	(.40)		(25.31)	(15.96)	(23.33)	(23.13)		(.99)	(1.00)	(.88)	(.95)		(.74)	(.79)	(.83)	(.84)
Upper-	42	08 ^a	07ª	30 ^{ab}	27ª	43	65.42 ^b	78.09 ^{ab}	45.42ª	48.35 ^a	43	5.34 ^b	5.47 ^a	3.26ª	3.11 ^{ab}	43	5.00 ^b	5.63 ^b	3.82ª	4.06a
Middle		(.26)	(.28)	(.36)	(.40)		(20.49)	(14.79)	(22.30)	(20.99)		(.76)	(.85)	(.88)	(.82)		(.72)	(.72)	(.69)	(.80)
	34	02ª	01ª	24 ^{ab}	26ª	34	65.65 ^b	77.76 ^{ab}	43.91ª	46.59ª	34	5.24 ^{ab}	5.31ª	3.38a	3.19 ^{ab}	34	4.91 ^b	5.47 ^{ab}	3.91ª	4.03ª
Upper		(.27)	(.28)	(.41)	(.41)		(23.24)	(15.94)	(23.97)	(24.29)		(.74)	(.91)	(.97)	(.84)		(.78)	(.76)	(.96)	(.97)

Notes. Superscript comparisons are within variable and within subgroup; Values that share the same superscript did not differ from each other (t-test p > 0.05), values with different superscripts differed from each other (t-test p < 0.05).

Table S11. Study 3: Correlations between IATs and AMP Scores

	Condition 1 (Com	pare Social Class)	Condition 2 (Compare Race)			
	HSC-LSC Black IAT	HSC-LSC White IAT	HSC White-Black IAT	LSC White-Black IAT		
HSC White AMP Score	04	.15	12	.07		
HSC Black AMP Score	11	.11	25*	03		
LSC White AMP Score	14	04	02	.18		
LSC Black AMP Score	19	07	06	.10		

Note. *p < .05, **p < .01; condition 1: n = 93, condition 2: n = 81

Table S12. Study 3: Correlations between IATs and Explicit Measures

	Condition 1 (Con	npare Social Class)	Condition 2 (Compare Race)			
	HSC-LSC Black IAT	HSC-LSC White IAT	HSC White-Black IAT	LSC White-Black IAT		
FT: HSC White	.08	.09	06	.23*		
FT: HSC Black	.24*	.07	06	<.01		
FT: LSC White	12	11	25*	.04		
FT: LSC Black	10	22*	25*	06		
CS: HSC White	.08	.08	.04	.01		
CS: HSC Black	.04	.07	02	.02		
CS: LSC White	01	21*	06	.03		
CS: LSC Black	07	08	22*	<.01		

PB: HSC White	.02	.07	.07	.11
PB: HSC Black	.16	.06	.14	.03
PB: LSC White	18	03	11	.17
PB: LSC Black	12	10	19	02

Note. FT = Feeling Thermometer, CS = Cultural Stereotype, PB = Personal Beliefs; *p < .05, **p < .01; condition 1: n = 97, condition 2: n = 84

Table S13. Study 3: Correlations between AMP Scores and Explicit Measures

	HSC White AMP Score	HSC Black AMP Score	LSC White AMP Score	LSC Black AMP Score
FT: HSC White	.22**	02	.05	10
FT: HSC Black	.06	.14*	05	01
FT: LSC White	.10	.05	.10	.12
FT: LSC Black	.11	.17*	.11	.19**
CS: HSC White	04	.06	16*	12
CS: HSC Black	01	.09	12	11
CS: LSC White	.13	01	.12	.07
CS: LSC Black	.18*	.08	.19**	.15*
PB: HSC White	<01	09	13	20**
PB: HSC Black	06	.07	13	11
PB: LSC White	.10	.12	.12	.17*

PB: LSC Black .07 .26*** .11 .23**

Note. $FT = Feeling\ Thermometer,\ CS = Cultural\ Stereotype,\ PB = Personal\ Beliefs;\ *p < .05,\ **p < .01;\ n = 190.$

Table S14. Study 3: Correlations Between Explicit Measures

	FT:	FT:	FT:	FT:	CS:	CS:	CS:	CS:	PB:	PB:	PB:	PB:
	HSC	HSC	LSC	LSC	HSC	HSC	LSC	LSC	HSC	HSC	LSC	LSC
	White	Black	White	Black	White	Black	White	Black	White	Black	White	Black
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1												
2	.30***											
3	.20**	.16*										
4	02	.27***	.77***									
5	.17*	.18*	04	11								
6	.20**	.20**	.05	.03	.40***							
7	.06	03	.16*	.11	09	04						
8	.11	04	.16*	.14	38***	03	.48***					
9	.46***	.10	.07	09	.55***	.40***	.08	01				

10	.05	.34***	.02	.10	.47***	.60***	05	23**	.51***			
11	.06	.30	.47***	.38***	.01	05	.46***	.29***	.12	01		
12	12	.12	.36***	.46***	03	.11	.26***	.21**	10	.15*	.64***	

Note. $FT = Feeling\ Thermometer,\ CS = Cultural\ Stereotype,\ PB = Personal\ Beliefs;\ *p < .05,\ **p < .01,\ ***p < .001;\ n = 199.$