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Abstract

This document includes the appendices referred to in the main text.

Appendix A
Monte-Carlo simulation of the simple selection model

These simulations employed true effect sizes of δ = (0.0, 0.2, 0.4, 0.6), and α = 0.05.
The number of studies per meta-analysis was k = (10, 20, 30). Therefore, these sim-
ulations evaluate the performance of the MLE procedure for relatively small values
of k, which provides an especially challenging test for this procedure. Moreover,
the sample size n = n1 = n2 also varied across the studies in each meta-analysis.
Specifically, we used

1. n = (20, 25, 30, . . . , 65) for k = 10,

2. n = (20, 20, 25, 25, . . . , 65, 65) for k = 20, and

3. n = (20, 20, 20, 25, 25, 25, . . . , 65, 65, 65) for k = 30.
By comparison, an examination of the k-values of more than 400 published meta-
analyses in social psychology reveals that k values of 22, 39, and 83 would have
percentile ranks of 25 %, 50 %, and 75 %, respectively (Richard, Bond, & Stokes-
Zoota, 2003).

Each row in Table A1 contains the simulation results for a particular combina-
tion of k and δ, summarized across the 2,000 simulated meta-analyses. The simula-
tions at each combination were summarized by computing (a) the mean of the 2,000
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estimates d, (b) the median of these estimates, (c) the standard deviation SD(d) of
these estimates, (d) the average estimated standard error SE(d) across the 2,000 sim-
ulations, (e) the percentage of simulations fCI in which the estimated 95 % confidence
interval actually covered the true effect size δ, and (f) the percentage of simulations
in which the null hypothesis was rejected (i.e., the Type I error rate or the statistical
power of the likelihood ratio test).

The results of these simulations enable the following conclusions. (a) The mean
estimate d tends to be slightly negatively biased. However, this bias diminishes
quickly with an increase of k or δ. (b) By contrast, the median d closely reflects the
true value δ. The difference between the mean and median becomes smaller with an
increase of k or δ, suggesting that the sampling distribution of d approaches a normal
distribution. (c) The standard deviation SD(d) of the estimates, which is an estimate
of the true standard error of estimate, also diminishes with an increase in either
of these two parameters. (d) The average estimated standard error SE(d) closely
matches the standard error observed across simulations, especially for larger values of
k or δ. (e) Consistent with the pre-specified confidence coefficient of 95 %, the true
effect size was included within the estimated confidence interval in approximately 95 %
of all simulations. (f) The statistical power of the likelihood ratio test increases with δ
and k, as one would expect. Moreover, for δ = 0, the test produces approximately the
pre-specified Type I error rate of α = 0.05. An additional set of simulations showed
that the estimation of δ also improves if the sample sizes of the single studies within
a meta-analysis increase. In sum, the proposed MLE procedure for estimating δ from
only significant studies has quite good statistical properties and thus appears to be
a valuable tool for estimating the true effect size when publication is contingent on
statistical significance in a specific positive direction.

Appendix B
Monte-Carlo simulation of the mixture model

As was done for the previous model, we conducted Monte-Carlo simulations to check
the statistical properties of the estimates d and p̂sp for the two-sample t-test with α =
0.05. These simulations employed only effect sizes of δ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6),
since larger δ’s yield nearly all significant results, making it difficult to identify psp.
Furthermore, the values of k and psp were chosen to be k = (20, 40, 60, 80) and
psp = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Two thousand simulations were conducted for each
combination of the parameters psp, δ, and k. The sample sizes n = n1 = n2 were
again varied across the studies in each meta-analysis. In particular, these were

1. n = (20, 24, 28, . . . , 96) for k = 20,

2. n = (20, 20, 24, 24, 28, . . . , 96, 96) for k = 40,

3. n = (20, 20, 20, 24, 24, . . . , 96, 96, 96) for k = 60, and

4. n = (20, 20, 20, 20, 24, . . . , 96, 96, 96, 96) for k = 80.
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Table A1
Results of Monte-Carlo simulation. Values of d as a function of number of studies
k, and true effect size δ. mean d: the mean of the simulated estimates d. med d:
the median of these estimates. SD(d): the standard deviation of these estimates.
SE(d): the average estimated standard error. fCI(δ): the percentage of simulations
in which the estimated 95 % confidence interval covered the true effect size δ. Power:
the percentage of simulations in which the null hypothesis was rejected.

Parameters Dependent Variables
k δ mean d med d SD(d) SE(d) fCI(δ) Power
10 0.00 -0.05 -0.01 0.22 0.21 95.5 4.2
20 0.00 -0.03 -0.01 0.15 0.14 95.2 5.7
30 0.00 -0.01 -0.00 0.12 0.11 95.6 4.6
10 0.20 0.17 0.19 0.17 0.16 95.7 24.9
20 0.20 0.19 0.20 0.11 0.11 94.7 42.6
30 0.20 0.19 0.19 0.09 0.09 95.0 54.3
10 0.40 0.38 0.40 0.12 0.11 95.4 81.2
20 0.40 0.39 0.40 0.08 0.08 95.6 97.5
30 0.40 0.40 0.40 0.06 0.06 95.7 99.7
10 0.60 0.59 0.60 0.09 0.09 95.0 99.7
20 0.60 0.60 0.60 0.06 0.06 95.0 100.0
30 0.60 0.60 0.60 0.05 0.05 95.3 100.0

All simulations also examined the performance of both Egger’s method and the rank
correlation method in detecting a potential publication bias. Since the results were
very similar for the two methods, we only report those for Egger’s method.

The left three panels in Figure B1 show how the the model performs in de-
tecting a potential publication bias as a function of psp, k, and δ. First, when no
publication bias is present (i.e., psp = 0), the estimated Type I error rate is appro-
priately low, that is, lower than the nominal α-level of 0.05. Overall, the average
proportion of inappropriately indicating a publication bias is 0.03, and this value is
virtually independent of the true effect size δ and the number of studies k. This
demonstrates that the model behaves somewhat conservatively, extending the obser-
vations of Rust, Lehmann, and Farley (1990), who also found Type I error rates below
5 % in simulations with different distributional assumptions and with identical rather
than different sample sizes across all studies within each meta-analysis. Second, as
one expects, the model’s ability to detect a publication bias increases with k and with
psp. For psp ≥ 0.6, the model is quite powerful in detecting such a bias even when
k is small. Finally, these results are virtually independent of δ, at least in the range
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Figure B1 . Statistical power of detecting a potential publication bias. The left panels
A, C, and E depict the results for the mixture model and the right panels B, D, and
F the results for Egger’s method. Each panel shows the probability of rejecting the
null hypothesis (i.e., psp = 0) as a function of k and psp. Note that δ increases from
the top to bottom panels. The horizonal line in each panel indicates the nominal α
level of 0.05.

between 0 and 0.5. For comparison, the right three panels in Figure B1 demonstrate
the performance of Egger’s method of testing for publication bias. First, the Type
I error rate of this method clearly overshoots α = 0.05, that is, the average Type I
error rate is 0.11, and it also increases with δ. Second, this method is generally less
powerful than the test provided by the mixture model. Finally, the performance of
this method strongly depends on effect size δ. Except when psp = 1, its power is ex-
tremely low with small effects (i.e., δ = 0.1), which is especially unfortunate because
publication bias produces the most serious distortions of effect size estimates when
the true effect is small.

Figure B2 reveals the statistical power of the model in detecting a potential
effect (i.e., rejecting the null hypothesis δ = 0) as a function of k, δ, and psp. Each
panel shows this power for a different value of psp. First, when there is no true effect
(i.e., δ = 0), the estimated Type I error rate is virtually identical to the nominal
α-level of 0.05. In particular, the overall average proportion of falsely indicating an
effect is 0.048, and it is practically independent of psp and the number of studies k.
Second, as one expects, the power increases with δ and k. As can be seen, power is
high even for k = 20. For effect sizes of δ ≥ 0.3, the power is close to one. Finally,
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Figure B2 . Statistical power of detecting a true effect. Each panel shows the proba-
bility of rejecting the null hypothesis (i.e., δ = 0) as a function of k and δ. Note that
psp increases from Panel A to F. The horizonal dashed line in each panel indicates
the nominal α level of 0.05.

power suffers slightly for psp = 1, presumably because an extreme publication bias
conceals information that is relevant for assessing the existence of a true effect.

Figure B3 shows the median estimate p̂sp as a function of k, δ, and psp. Each
panel plots this median against the true value psp, thus revealing whether there is a
systematic bias in estimating psp. The estimates of psp are generally quite unbiased, at
least for k ≥ 40. Only for δ = 0, the estimates slightly undershoot the true value of psp,
that is, these estimates are somewhat conservative. However, this underestimation
disappears quickly as k increases. Figure B4 shows a similar analysis for δ and clearly
demonstrates that d is quite unbiased, a result that is also consistent with Rust et al.
(1990).

Figure B5 shows the mean estimated coverage probability of 95 % confidence
intervals for psp as a function of k and psp. Each panel plots this estimate for a
different value of δ. In general, the estimated coverage probability closely resembles
the target coverage probability of 0.95. However, when the true psp is either 0 or 1,
the estimated 95 % CI fails to cover the true value of psp. For all other values of
psp, the total average estimated coverage probability is 0.950. Therefore, when p̂sp is
close to zero or close to one, the percentile-bootstrap procedure (Hogg, McKean, &
Craig, 2005) is recommended to estimate a confidence interval for psp. In that case,
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Figure B3 . Median of p̂sp as a function of k, δ, and psp. Each panel shows the median
of p̂sp plotted against the true value of psp on the x-axis. Note that δ increases from
Panel A to F. Deviations from the dotted line y = x indicate a systematic bias in
estimating psp.

the MLE procedure needs to be repeated with at least 3,000 bootstrap samples to
yield an appropriate sampling distribution for p̂sp.

Figure B6 shows the estimated coverage probability for δ. The estimated prob-
ability is close to 0.95, except when psp is one. In this case, the estimated coverage
probability is too low. Therefore, if p̂sp is very close to one, one should also use the
bootstrap method to estimate the 95 % CI for δ. The total average estimated cover-
age probability of δ for all values psp < 1 is 0.956 and thus again close to the target
value of 0.950.

In summary, the MLE procedure mixture model displays generally rather sat-
isfactory properties.

1. The statistical power to detect a potential publication bias is relatively high,
while the Type I error rate is kept appropriately low when there is no publication
bias. This conclusion also applies to the statistical power to detect the presence
of a true effect.

2. In general, the estimates of psp are satisfactory, except when psp and k are small.
For k ≥ 40, the estimates seem to be quite unbiased. By contrast, the estimate
of δ seems to be unbiased in general.
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Figure B4 . Median of d as a function of k, δ, and psp. Each panel shows the median
of d plotted against the true value of δ on the x-axis. Note that psp increases from
Panel A to F. Deviations from the dotted line y = x indicate a systematic bias in
estimating δ.

3. The coverage probability of the confidence interval for psp is generally satisfac-
tory, unless psp is either close to zero or close to one. Thus when p̂sp is close
to zero or to one, bootstrapping should be used to obtain confidence intervals.
The coverage probability of the confidence interval for δ is generally excellent
unless psp is close to one.

Appendix C
Monte-Carlo simulation: Violation of the fixed-effect assumption

In order to assess the robustness of the present MLE procedures, we conducted two
additional Monte-Carlo simulations in which the true effect size for each single study
was randomly drawn from a normal distribution with mean µδ and variance τ 2.
The first simulation explored the robustness of the simple model. Specifically, the
between-study variance, τ 2, was either 0.023, 0.060, or 0.170, where τ 2 = 0 rep-
resents the case of a fixed-effect model. Similar values have been used by others
in previous Monte-Carlo simulations of random-effects models (see Huedo-Medina,
Sánchez-Meca, Marín-Martínez, & Botella, 2006).

These selected values of τ 2 can also be linked to the I2 index that quantifies the
between-study variability relative to the total variability in meta-analyses (Higgins,
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Figure B5 . Estimated coverage probability of a 95 % confidence interval for psp as a
function of k, δ, and psp. Each point shows the proportion of confidence intervals that
covered the true psp in a simulation of 2,000 meta-analyses. Note that δ increases
from Panel A to F. The dashed line marks the correct coverage probability of 0.95.

Thompson, Deeks, & Altman, 2003). Under the assumption of no publication bias,
the aforementioned values of τ 2 = (0.0, 0.023, 0.060, 0.170) correspond approximately
to I2 = (0 %, 25 %, 50 %, 75 %) in meta-analyses containing k = 20 studies with
samples sizes of n = (20, 20, 25, . . . , 65, 65), as we confirmed by computer simulations
similar to those of Huedo-Medina et al. (2006). Note that the index I2 increases
from 0 % to 100 % as τ 2 increases. Higgins et al. (2003) suggested that the values
of I2 = 25 %, 50 %, and 75 % indicate low, moderate, and high contributions of τ 2

to the total variance, respectively. In their review of 509 meta-analyses, I2 was zero
(or even negative) for almost half of these meta-analyses and thus consistent with
the assumption τ 2 = 0, supporting the idea that the fixed-effect assumption holds at
least approximately in many cases.1

1The standard procedures (compare Borenstein, Hedges, Higgins, & Rothstein, 2009) for esti-
mating τ and I2 are straightforward for meta-analyses when no publication bias is present. Un-
fortunately, these procedures are strongly sensitive to publication bias. For example, when only
significant studies are published, our simulations showed that these procedures strongly underesti-
mate the true value of τ2 and consequently also I2. One major reason for this huge underestimation
is that the between-study variance of d becomes smaller when only significant results enter a meta-
analysis due to publication bias. It would be possible to adapt this procedure by taking into account
not only this reduced variance but also the fact that truncation affects the within-study variability
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Figure B6 . Estimated coverage probability of a 95 % confidence interval for δ as a
function of k, δ, and psp. Each point shows the proportion of confidence intervals that
covered the true δ in a simulation of 2,000 meta-analyses. Note that psp increases
from Panel A to F. The dashed line marks the correct coverage probability of 0.95.

Table C1 contains the simulation results for the simple model according to which
only significant results are published. The first two columns of this table depict the
selected values of τ 2 and µδ, respectively. In many cases, the results of the model are
quite robust. However, for large values of τ 2, the true effect sizes are overestimated,
especially for small values of µδ. In this case the estimate d becomes positively
biased and consequently there is a decrease in the proportion of confidence intervals
containing µδ.

In a second simulation study, we assessed the robustness of the mixture model.
The results of this study also provided reassurance that the model performs well as
long as there is only mild between-study variability in δ, say τ < 0.15. However,
for larger values of τ the model produces more Type I errors than 5 % of the time,
especially for detecting potential publication biases. In general, however, the mixture
model still gives reasonable estimates of δ even when there is considerable between-
study variance. The simulations also revealed that the numerical MLE procedure
of this model frequently fails to converge when there is considerable between-study
variability, which is usually due to numerical limitations when the t-values are very
negative and thus the evaluation of the conditional t-distribution for T > tα fails com-

(see Equation E.1), although such an adaptation is beyond the scope of this paper.
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Table C1
Results of Monte-Carlo simulations. Across k = 20 simulated studies within each
meta-analysis, true effect size δ was normally distributed with mean µδ and variance
τ 2. The dependent variables are the same as in Table A1. The last column contains
the estimate τ̂ 2 obtained with the standard meta-analytic procedure for estimating τ 2.

Parameters Dependent Variables
τ 2 µδ mean d med d SD(d) SE(d) fCI(δ) Power τ̂ 2

0.000 0.00 -0.02 -0.01 0.15 0.14 95.3 5.5 0.000
0.023 0.00 -0.00 0.01 0.15 0.14 93.5 6.3 0.000
0.060 0.00 0.06 0.08 0.14 0.13 86.3 10.9 0.000
0.170 0.00 0.21 0.22 0.10 0.10 42.9 49.8 0.001
0.000 0.20 0.18 0.20 0.11 0.11 95.1 42.8 0.000
0.023 0.20 0.21 0.23 0.11 0.10 93.0 52.9 0.000
0.060 0.20 0.27 0.28 0.09 0.09 84.0 73.5 0.000
0.170 0.20 0.38 0.38 0.07 0.08 36.9 97.9 0.006
0.000 0.40 0.39 0.40 0.08 0.08 95.2 97.4 0.000
0.023 0.40 0.42 0.42 0.08 0.08 93.0 99.2 0.000
0.060 0.40 0.46 0.47 0.07 0.07 83.7 99.9 0.002
0.170 0.40 0.53 0.53 0.06 0.07 47.9 100.0 0.025
0.000 0.60 0.60 0.60 0.06 0.06 95.6 100.0 0.001
0.023 0.60 0.61 0.61 0.06 0.06 95.2 100.0 0.003
0.060 0.60 0.63 0.63 0.05 0.06 93.3 100.0 0.012
0.170 0.60 0.67 0.67 0.05 0.06 77.0 100.0 0.057

putationally. In sum, care must be taken in interpreting d when there is considerable
heterogeneity across the studies in a meta-analysis.
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Appendix D
Monte-Carlo simulation: Gradual publication bias

These simulations proceeded from the assumption that the publication probability
for a study depends on its significance level as specified in Equation 35. Specifically,
2,000 meta-analyses were simulated with the parameters δ = (0.0, 0.1, 0.2, 0.3, 0.4)
and k = (40, 80). As before, the sample sizes of each group within a meta-analysis
were n = (20, 20, 24, . . . 96, 96) for k = 40, and n = (20, 20, 20, 20, 24, . . . 96, 96, 96, 96)
for k = 80. A two-sample t-test was simulated for each study and the corresponding
p-value calculated. This p-value determined according to Equation 35 whether or
not this study was included in the meta-analysis. It is important to recognize that
this selection scenario implies that the number of non-reported studies increases as
sample size n decreases especially for small effect sizes. This scenario appears realistic
when sample sizes vary over research projects due to different research strategies for
optimizing research outcomes (Miller & Ulrich, 2016). Using the simulated data of
studies selected in this fashion, the SP cutoff α within the mixture model was set to
0.05 in order to obtain the estimates p̂sp and d.

The major results of this simulation are summarized in Table D1. The results
demonstrate that the model is quite robust when its assumption of a step-like weight
function (i.e., Equation 36) is violated. First, the estimates of d are only slightly too
large in this case, and the power of detecting a positive effect is again high, although
the Type I error rate is also slightly inflated. Second, p̂sp tends to be larger than
zero indicating that the basic mixture model is also able to detect a publication bias
under this scenario despite the fact that the assumption of a true step-like weight
function no longer holds. Moreover, but in agreement with the earlier simulations,
the power to detect a publication bias diminishes as δ increases, basically because in
that case most results are significant and so only a few outcomes would be put in the
file drawer. In further simulations, we also verified that the probability of detecting a
publication bias strongly increases when P (publish|p) is further reduced for p-values
larger than 0.05 in Equation 35.

The basic version of the mixture model also assumes that a nonsignificant result
is published with probability 1 − psp irrespective of a study’s total sample size. It
seems more realistic, however, to assume that nonsignificant results are more likely
to be published for studies with larger rather than smaller samples, because d can
be more precisely estimated with larger samples. Therefore, we also examined the
robustness of the mixture model when publication probability depends on sample
size. To do that, we basically reran the previous simulations but used psp = 0.5
for sample sizes n ≥ 60 per group and psp = 0.9 for n < 60. The results of these
simulations are shown in Table D2. First, d recovers fairly well the true value of δ,
although these estimates tend to slightly underestimate the true values. Second, and
as one might expect, mean p̂sp lies between the two values 0.5 and 0.9 of psp used in
the simulations and is unaffected by the size of δ. The power to detect publication
bias is almost always larger than 90 %. These results support the view that the basic
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Table D1
Results of Monte-Carlo simulations in which the probability of publication increases
gradually with the significance level of an outcome (see Equation 35). The first two
columns show the parameters of the various simulations. The number of simulated
studies was either k = 40 or k = 80. The true effect size δ was varied from 0.0 to 0.4.
Each simulated study used a two-sample one-sided t-test with sample size n per group
ranging from 20 to 96. In estimating the parameters within the basic mixture model,
the SP cutoff α level was set to 0.05. Two thousand simulations were conducted for
each combination of k and δ. The dependent variables are the mean estimates of δ
and psp, the standard errors of these estimates, and the power (%) of rejecting the
null hypothesis δ = 0 and psp = 0, respectively.

Parameters Results for δ Results for psp
k δ mean d SD(d) Power mean p̂sp SD(p̂sp) Power
40 0.00 0.01 0.04 9.7 0.53 0.25 30.6
40 0.10 0.14 0.04 94.0 0.39 0.26 18.6
40 0.20 0.27 0.04 100.0 0.26 0.25 8.0
40 0.30 0.35 0.04 100.0 0.24 0.24 7.4
40 0.40 0.41 0.04 100.0 0.24 0.24 6.0
80 0.00 0.01 0.03 10.2 0.56 0.20 54.4
80 0.10 0.14 0.03 99.8 0.41 0.21 33.3
80 0.20 0.26 0.03 100.0 0.25 0.21 12.5
80 0.30 0.34 0.03 100.0 0.21 0.20 8.6
80 0.40 0.42 0.03 100.0 0.20 0.19 6.3

mixture model is quite robust even under this scenario.

Appendix E
Derivation of the standard error of d

When only significant positive results enter a meta-analysis, not only is δ overesti-
mated but also the sampling variance of d no longer corresponds to the one that
is needed by meta-analysts to perform fixed-effect or random-effects meta-analyses
(Borenstein et al., 2009). For example, the sampling variance of d for a two-sample
t-test with only significant results would be computed with

V ar(d|T > tα) = n1 + n2

n1 · n2
· V ar (T |T > tα) (E.1)

= n1 + n2

n1 · n2
·

∫ ∞
tα

[t− E(T |T > tα)]2 · fT (t|T > tα, ε, ν) dt.(E.2)
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Table D2
Results of Monte-Carlo simulations in which the probability psp depends on sample
size. The first two columns show the parameters of the various simulations. The
number of simulated studies was either k = 40 or k = 80. The true effect size δ was
varied from 0.0 to 0.4. Each simulated study used a two-sample one-sided t-test with
sample size n per group ranging from 20 to 96 and a significance level of α = 0.05.
Two thousand simulations were conducted for each combination of k and δ. The
dependent variables are the mean estimates of δ and psp, the the standard error of
these estimates, and the power (%) of rejecting the null hypothesis δ = 0 and psp = 0,
respectively.

Parameters Results for δ Results for psp
k δ mean d SD(d) Power mean p̂sp SD(p̂sp) Power
40 0.00 -0.01 0.04 9.2 0.80 0.14 84.5
40 0.10 0.08 0.04 49.1 0.80 0.12 90.3
40 0.20 0.18 0.05 95.5 0.79 0.12 90.0
40 0.30 0.28 0.05 100.0 0.80 0.11 92.7
40 0.40 0.39 0.04 100.0 0.81 0.12 90.6
80 0.00 -0.01 0.03 9.4 0.82 0.09 98.8
80 0.10 0.08 0.03 78.8 0.81 0.08 99.6
80 0.20 0.18 0.04 99.9 0.80 0.08 99.6
80 0.30 0.28 0.04 100.0 0.80 0.08 99.4
80 0.40 0.39 0.03 100.0 0.82 0.08 99.6

In order to illustrate the preceding equation assume n1 = 30, n2 = 20, α = 0.05,
δ = 0.30, which would yield V ar(d|T > 1.68) = 0.162. The sampling variance of d in
meta-analysis, however, is typically computed under the assumption of no publication
bias, that is, (see Hedges & Olkin, 1985, p. 80, Equation 8)

V ar(d) = n1 + n2

n1 · n2
· V ar (T ) (E.3)

= n1 + n2

n1 · n2
·

∫ ∞
−∞

[t− E(T )]2 · fT (t|ε, ν) dt (E.4)

≈ n1 + n2

n1 · n2
+ δ2

2 · (n1 + n2 − 3.94) . (E.5)

For the above numerical example this yields V ar(d) = 0.292. Thus, when a meta-
analysis is performed exclusively on significant results, not only is the estimated effect
size too large, but also the confidence interval surrounding this estimate would be too
large.
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Appendix F
Computation of the predicted proportion of significant results

According to the mixture model, nonsignificant results from the SP-path will be
put into the file drawer. Consequently, significant results are predicted to be over-
represented in a meta-analysis. This bias towards significant results is predicted to
increase with psp. Under the assumptions of this model, it is possible to compute the
predicted proportion of significant results in a meta-analysis for any combination of
δ and psp, and this is given by the following conditional probability

P (Result is significant|Result is published) = P (PE ∩ s) + P (SP ∩ s)
P (Result is published)

= 1− FT (tα|ε, ν)
1− psp · FT (tα|ε, ν)

The left panel of Figure F1 depicts this probability as a function of δ and psp for
a one-sample t-test with n = 20. The line for psp = 0 gives the power of this t-test,
which starts at the significance level α = 0.05 for δ = 0 and then increases gradually
towards one as the effect size increases. This line reflects the proportion of all studies
predicted to give significant results, and it serves as a baseline for evaluating the
biasing effects of psp > 0. The remaining lines demonstrate how significant results
become over-represented among published results when psp increases. This happens
because, as psp increases, an increasing number of nonsignificant results from the SP-
path will be put into the file drawer, as is shown in the panel on the right. As one
expects, the proportion of studies in the file drawer not only increases with psp but also
decreases toward zero with increasing δ. Therefore, if the SP-path is the dominant
publication strategy (i.e., large psp), many results will be put into the file drawer
when the true effects are small. Figure F2 shows how these results would change
if n is increased from 20 to 100. First, and as one would expect, the conditional
probability of a significant result given publication increases with larger n. Second,
the proportion of nonsignificant results that are put into the file drawer decreases as
n increases, except when δ = 0.

Appendix G
Extension of the mixture-model to two-sided t-tests

The preceding models presuppose that the publication of results depends on the sta-
tistical significance and on the direction of the results obtained. For example, when
the efficacy of a new medical intervention is statistically supported, this would be
regarded as a positive and thus publishable result. Likewise, an experimental psy-
chologist testing the hypothesis that forgetting occurs because of interference will
consider the results as positive if the experimental group (with an interference task)
demonstrates significantly more forgetting than the control group (without interfer-
ence). In both examples, results will most likely be regarded as negative both if
they are nonsignificant and if they are significant opposite to the direction of the
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Figure F1 . Left Panel: Predicted proportion of significant results in a meta-analysis
(i.e., the conditional probability of a significant result given that the result is pub-
lished) as a function of δ and psp. Right Panel: The compound probability P (SP∩ns)
that a result goes into the file drawer as a function of δ and psp. These results apply
to a one-sided t-test with n = 20 and α = 0.05.

researcher’s hypothesis.
In some research scenarios, however, a researcher’s hypothesis may not specify

in advance the direction of results. For example, a gender psychologist may wonder
whether the degree of aerophobia differs between males and females. For this research,
the direction of the difference would not matter, and the results of the study would be
regarded as positive and hence publishable any time that males and females differed
significantly. In this case, the researcher would employ a two- rather than one-sided
t-test, so the preceding mixture model would not apply. It is, however, possible to
modify this model to accommodate two-sided t-tests.

According to this modification, a study taking the SP-path is only published if
the resulting t-value is either smaller than −tα/2 or larger than tα/2. An analogous
mathematical derivation as for the preceding mixture model yields the PDF of t values
for this two-sided model version,

fT (t) = fT (t, |ε, ν) · [1− psp · I(−tα/2 < t < −tα/2)]
1− psp · [FT (tα/2|ε, ν)− FT (−tα/2|ε, ν)] , (G.6)

where I = 1 if−tα/2 < t < −tα/2 and zero otherwise. This distribution is illustrated in
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Figure F2 . Left Panel: Predicted proportion of significant results in a meta-analysis
(i.e., the conditional probability of a significant result given that result is published)
as a function of δ and psp. Right Panel: The compound probability P (SP ∩ ns) that
a result goes into the file drawer as a function of δ and psp. These results apply to a
one-sided t-test with n = 100 and α = 0.05.

Figure G1, and it can be seen to resemble the model of Iyengar and Greenhouse (1988).
In contrast to their formulation, however, the present version allows estimation of psp.

As one expects, this two-sided version makes different predictions for small
values of δ compared to the predictions of the preceding mixture model for one-
sided t-tests. However, as δ increases, the predictions of this model become virtually
identical to those of the one-sided version. Moreover, for the special case of psp = 1,
this two-sided version reduces to the model suggested by Hedges (1984), which was
discussed in the Introduction of the main text. Hedges’s special case assumes that
only significant results, irrespective of the direction of the outcome, will be published.
Therefore, the above formulation also includes Hedges’s model of two-sided t-tests as
a special case.

Appendix H of this supplement contains the R code for estimating δ and psp
under the assumptions of this modified model. To illustrate the procedure, we used
the same hypothetical example with k = 20 that was used to illustrate the one-sided
case (Table 2). This yields d = 0.14, SE = 0.05, CI95% = [0.04, 0.24], and the null
hypothesis of δ = 0 is rejected, χ2 = 10.7, df = 1, p < .001. Furthermore, the
program outputs p̂sp = 0.70, SE = 0.18, CI95% = [0.31, 0.92], and in this case the
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Figure G1 . Probability density functions predicted by the random mixture model.
Each panel depicts the PDF for various values of the mixture probability psp =
(0, 0.25, 0.50, 0.75, 1). Left panel: δ = 0.1. Right panel: δ = 0.2. The underlying
t-distribution is associated with a two-sided one-sample t-test and n = 40.

associated likelihood ratio test of psp = 0 only approaches statistical significance,
χ2 = 3.7, df = 1, p = .057.
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Appendix H
Model 1: R code for estimating δ when all results are significant

The following R code estimates δ when only significant studies enter a meta-analysis.
Note that the following code can also be downloaded: BiasR.zip and BiasMatlab.zip.

R code for two-sample t-test

EstimationTwoSampleSigOnly <− function ( t , n1 , n2 , alpha , ConCof ){

# S i g n i f i c a n t r e s u l t s only , two−sample t−t e s t

#### Input
# t : v e c t o r o f t−va l u e s
# n1 , n2 : v e c t o r s o f sample s i z e s f o r each s tudy
# alpha : s i g n i f i c a n c e l e v e l ( one s i ded t e s t , r i g h t t a i l )
# ConCof : con f idence c o e f f i c i e n t f o r c a l c u l a t i n g CI

#### Output
# d_e s t : e s t imate o f d e l t a
# SE: standard error o f e s t imate
# CI : con f idence i n t e r v a l o f d e l t a
# X2: square o f l i k e l i h o o d r a t i o t e s t , d f =1, H0 : d=0
# p : p−va lue a s s o c i a t e d wi th X2

# S ta r t i n g va l u e s o f d f o r nlminb−op t im i za t i on
dset <− c ( 0 . 6 , 0 . 3 , 0 . 0 )

# Compute c r i t i c a l v a l u e s f o r a l l s t u d i e s
c <− qt(1−alpha , n1+n2−2)
nu <− n1+n2−2
r <− sqrt ( n1∗n2/ ( n1+n2 ) )

f <− function (d)
−LogLike (d , t , nu , r , c )

# Convergence check wi th d i f f e r e n t s t a r t i n g va l u e s
j <− 0
f v a l <− dmax <− rep (NA, length ( dset ) )
for ( d0 in dset ){

j <− j+1
tmp <− nlminb (d0 , f )
f v a l [ j ] <− tmp$ ob j e c t i v e
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dmax [ j ] <− tmp$par
}

y <− min( f va l , na .rm = TRUE)
i <− which .min( f v a l )

i f (abs (var (dmax) ) > 1e−3){
cat ( ’Check␣ s t a r t i n g ␣ value ␣\n ’ )
print ( l i s t ( t=t , t .mean=mean( t ) ,

d_start=dset ,
dmax=dmax) )

d_e s t=NA; SE=NA
CI <− c (NA, NA)
X2=NA; p=NA

}

d_e s t <− dmax [ i ]
SE_CI <− se (d_est , t , nu , r , c , ConCof )
X2 <− abs(−2∗( LogLike (0 , t , nu , r , c)−LogLike (d_est , t , nu , r , c ) ) )

l i s t ( d_e s t=d_est ,
SE=SE_CI$SE ,
CI=SE_CI$CI ,
X2=X2 ,
p=1−pchisq (X2 , 1 ) )

}

LogLike <− Vecto r i z e (
function (d , t , nu , r , c ){

ncp <− d∗r
L <− sum(dt ( t , nu , ncp , log=TRUE) −

pt (c , nu , ncp , lower . t a i l=FALSE, log . p=TRUE) )
# For non s i g n i f i c an t r e s u l t s only , r e p l a c e the preced ing l i n e s
# by the f o l l ow i n g l i n e s .
# L <− sum( dt ( t , nu , ncp , l o g=TRUE) −
# pt ( c , nu , ncp , l o g . p=TRUE))
L

} , v e c t o r i z e . args="d " )

se <− function (d , t , nu , r , c , ConCof ){
h <− 0 .0001 # d i f f e r e n t i a l
g <− function (d) LogLike (d , t , nu , r , c )
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I <− ( g (d+h) − 2∗g (d) + g (d−h ) )/h^2 # Fisher i n f o at x = d
SE <− 1/sqrt(−I ) # Standard error o f e s t imate
p1 <− (1−ConCof )/2
p2 <− ConCof+p1
z <− qnorm(c ( p1 , p2 ) , 0 , 1 )
CI <− c (d+z [ 1 ] ∗SE , d+z [ 2 ] ∗SE) # Confidence i n t e r v a l
l i s t (SE=SE , CI=CI )

}

R code for one-sample t-test

EstimationOneSampleSigOnly <− function ( t , n , alpha , ConCof ){

# S i g n i f i c a n t r e s u l t s only , one−sample t−t e s t

#### Input
# t : v e c t o r o f t−va l u e s
# n : sample s i z e o f each s tudy
# alpha : s i g n i f i c a n c e l e v e l ( one s i ded t e s t , r i g h t t a i l )
# ConCof : con f idence c o e f f i c i e n t f o r c a l c u l a t i n g CI

#### Output
# d_e s t : e s t imate o f d e l t a
# SE: standard error o f e s t imate
# CI : con f idence i n t e r v a l o f d e l t a
# X2: square o f L i k e l i h ood r a t i o t e s t , d f =1, H0 : d=0
# p : p−va lue a s s o c i a t e d wi th X2

# S ta r t i n g va l u e s o f d f o r nlminb−op t im i za t i on
dset <− c ( 0 . 6 , 0 . 3 , 0 . 0 )

# Compute c r i t i c a l v a l u e s f o r a l l s t u d i e s
c <− qt(1−alpha , n−1)
nu <− n−1
r <− sqrt (n)

f <− function (d)
−LogLike (d , t , nu , r , c )

# Convergence check wi th d i f f e r e n t s t a r t i n g va l u e s
j <− 0
f v a l <− dmax <− rep (NA, length ( dset ) )
for ( d0 in dset ){
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j <− j+1
tmp <− nlminb (d0 , f )
f v a l [ j ] <− tmp$ ob j e c t i v e
dmax [ j ] <− tmp$par

}

y <− min( f va l , na .rm = TRUE)
i <− which .min( f v a l )

i f (abs (var (dmax) ) > 1e−3){
cat ( ’Check␣ s t a r t i n g ␣ value ␣\n ’ )
print ( l i s t ( t=t , t .mean=mean( t ) ,

d_start=dset ,
dmax=dmax) )

d_e s t=NA; SE=NA
CI <− c (NA, NA)
X2=NA; p=NA

}

d_e s t <− dmax [ i ]
SE_CI <− se (d_est , t , nu , r , c , ConCof )
X2 <− abs(−2∗( LogLike (0 , t , nu , r , c)−LogLike (d_est , t , nu , r , c ) ) )

l i s t ( d_e s t=d_est ,
SE=SE_CI$SE ,
CI=SE_CI$CI ,
X2=X2 ,
p=1−pchisq (X2 , 1 ) )

}

LogLike <− Vecto r i z e (
function (d , t , nu , r , c ){

ncp <− d∗r
L <− sum(dt ( t , nu , ncp , log=TRUE) −

pt (c , nu , ncp , lower . t a i l=FALSE, log . p=TRUE) )
# # For non s i g n i f i c an t r e s u l t s only , r e p l a c e the preced ing
# # l i n e s by the f o l l ow i n g l i n e s .
# L <− sum( dt ( t , nu , ncp , l o g=TRUE) −
# pt ( c , nu , ncp , l o g . p=TRUE))
L

} , v e c t o r i z e . args="d " )
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se <− function (d , t , nu , r , c , ConCof ){
h <− 0 .0001 # d i f f e r e n t i a l
g <− function (d) LogLike (d , t , nu , r , c )
I <− ( g (d+h) − 2∗g (d) + g (d−h ) )/h^2 # Fisher i n f o at x = d
SE <− 1/sqrt(−I ) # Standard error o f e s t imate
p1 <− (1−ConCof )/2
p2 <− ConCof+p1
z <− qnorm(c ( p1 , p2 ) , 0 , 1 )
CI <− c (d+z [ 1 ] ∗SE , d+z [ 2 ] ∗SE) # Confidence i n t e r v a l
l i s t (SE=SE , CI=CI )

}

Appendix I
Model 2: R code for estimating δ of the mixture model

The following R code estimates δ and probability psp when selective publishing is
based on a one-sided t-test.

R code for two-sample t-test

EstimationTwoSampleMix <− function ( t , n1 , n2 , alpha , ConCof ){

# mixture model , two−sample t−t e s t

#### Input
# t : v e c t o r o f t−va l u e s
# n1 and n2 : v e c t o r s wi th sample s i z e s o f each group
# alpha : s i g n i f i c a n c e l e v e l ( one s i ded t e s t , r i g h t t a i l )

#### Output
# d_e s t : e s t imate o f d e l t a
# SE_d : s tandard error o f d_e s t
# CI_d : con f idence i n t e r v a l f o r d e l t a
# p_e s t : e s t imate o f p
# SE_e s t : s tandard error o f p_e s t
# CI_p : con f idence i n t e r v a l f o r p
# X2: Chi−square o f l i k e l i h o o d r a t i o t e s t , d f =1, H0 : d=0
# p : p−va lue a s s o c i a t e d wi th X2
# XX2: Chi−square o f l i k e l i h o o d r a t i o t e s t , d f =1, H0 : p=0
# pp : p−va lue a s s o c i a t e d wi th XX2

## Define s t a r t i n g va l u e s o f p and d f o r nlminb
ps t a r t <− c ( . 2 , . 5 , . 8 )
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ds t a r t <− c (0 , . 2 , . 5 )

## Compute c r i t i c a l v a l u e s f o r a l l s t u d i e s ;
# r i s needed to compute d e l t a
nu <− n1+n2−2
c <− qt(1−alpha , nu)
r <− sqrt ( n1∗n2/ ( n1+n2 ) )

## Estimate d and p
f 1 <− function ( x )
−LogLike (x [ 1 ] , x [ 2 ] , t , nu , r , c )

# Checks l o c a l minima fo r d i f f e r e n t s t a r t i n g va l u e s de f ined above
fmax <− I n f
i <− 0
f s <− rep (NA, length ( d s t a r t ) )
for ( p0 in p s t a r t ){

for ( d0 in d s t a r t ){
i <− i+1
# many warnings due to p r e c i s i on ( does not a f f e c t r e s u l t s )
suppressWarnings (

tmp <− nlminb (c ( d0 , log ( p0/(1−p0 ) ) ) , f 1 )
)
f s [ i ] <− tmp$ ob j e c t i v e

i f (tmp$ ob j e c t i v e <fmax ){
d_e s t <− tmp$par [ 1 ]
l_e s t <− tmp$par [ 2 ]
fmax <− tmp$ ob j e c t i v e

}
}

}
i f ( sd ( f s )>1e−3){

cat ( ’Check␣ s t a r t i n g ␣ va lue s \n ’ )
print ( f s )

}

p_e s t <− 1/(1+exp(− l_e s t ) )
SEtmp <− se (d_est , p_est , t , nu , r , c )
SE_d <− SEtmp$SE_d
SE_l <− SEtmp$SE_l
SE_p <− SEtmp$SE_p
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## Confidence I n t e r v a l s
p1 <− (1−ConCof )/2
p2 <− ConCof+p1
z <− qnorm(c ( p1 , p2 ) , 0 , 1 )
CI_d <− d_e s t+z∗SE_d
CI_l <− l_e s t+z∗SE_l
CI_p <− 1/(1+exp(−CI_l ) )

## Compute l i k e l i h o o d r a t i o t e s t f o r d
f 0 <− function ( y ) −LogLike (0 , y , t , nu , r , c )
y <− nlminb ( log (p_e s t/(1−p_e s t ) ) , f 0 )$par
p_0 <− 1/(1+exp(−y ) )
X2 <− −2∗( LogLike (0 , log (p_0/(1−p_0 ) ) , t , nu , r , c ) −

LogLike (d_est , log (p_e s t/(1−p_e s t ) ) , t , nu , r , c ) )
p <− 1−pchisq (abs (X2) , 1 )

## Compute l i k e l i h o o d r a t i o t e s t f o r p
f 0 <− function ( y ) −LogLikeP0 (y , t , nu , r )
y <− nlminb (d_est , f 0 )$par
XX2 <− −2∗( LogLikeP0 (y , t , nu , r ) −

LogLike (d_est , log (p_e s t/(1−p_e s t ) ) , t , nu , r , c ) )
pp <− 1−pchisq (abs (XX2) , 1 )

l i s t (d_e s t=d_est , SE_d=SE_d , CI_d=CI_d ,
p_e s t=p_est , SE_p=SE_p , CI_p=CI_p ,
X2=X2 , p=p , XX2=XX2, pp=pp)

}

## Fisher In fo f o r d and p se <− f unc t i on (d , p , t , nu , r , c ){
h <− 0 .0001
i f (p+h > 1)

p <− p−h
i f (p−h < 0)

p <− p+h

I <− matrix (NA, 2 ,2)
f <− function (d , p) LogLike (d , log (p/(1−p ) ) , t , nu , r , c )
I [ 1 , 1 ] <− −( f (d+h , p)−2∗ f (d , p)+ f (d−h , p ) )/h^2
I [ 2 , 2 ] <− −( f (d , p+h)−2∗ f (d , p)+ f (d , p−h ) )/h^2
I [ 1 , 2 ] <− −( f (d+h , p+h)+ f (d−h , p−h)− f (d−h , p+h)− f (d+h , p−h ) )/(4∗h^2)
I [ 2 , 1 ] <− I [ 1 , 2 ]
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Cov <− solve ( I )
SE_d <− abs ( sqrt (Cov [ 1 , 1 ] ) )
SE_p <− abs ( sqrt (Cov [ 2 , 2 ] ) )

l <− log (p/(1−p ) )
f f <− function (d , l ) LogLike (d , l , t , nu , r , c )
I [ 1 , 1 ] <− −( f f (d+h , l )−2∗ f f (d , l )+ f f (d−h , l ) )/h^2
I [ 1 , 2 ] <− −( f f (d+h , l+h)+ f f (d−h , l−h)− f f (d−h , l+h)− f f (d+h , l−h ) )/(4∗h^2)
I [ 2 , 1 ] <− I [ 1 , 2 ]
I [ 2 , 2 ] <− −( f f (d , l+h)−2∗ f f (d , l )+ f f (d , l−h ) )/h^2
Cov <− solve ( I )
SE_l <− abs ( sqrt (Cov [ 2 , 2 ] ) )

l i s t (SE_d=SE_d , SE_p=SE_p , SE_l=SE_l )
}

LogLike <− Vecto r i z e (
function (d , l , t , nu , r , c ){

p <− 1/(1+exp(− l ) )
ncp <− d∗r
# # for extreme va lues , p r e c i s i on o f d t ( ) / pt ( ) causes warnings
MLE <− sum( log (MixPdf ( t , p , nu , ncp , c ) ) )
MLE

} , v e c t o r i z e . args=c ( "d " , " l " ) )

MixPdf <− Vecto r i z e (
function ( t , p , nu , ncp , c ){

beta <− pt (c , nu , ncp )
A <− 1−p∗beta
I <− i f e l s e ( t<=c , 1 , 0)
# For the mixture model wi th suppre s s ing s i g n i f i c a n t r e s u l t s ,
# rep l a c e the next l i n e s wi th the preced ing l i n e s .
# A <− 1−p∗(1− be ta )
# i f e l s e ( t<=c , 0 , 1)
f <− dt ( t , nu , ncp )∗(1−p∗I )/A
f

} , v e c t o r i z e . args=c ( " t " , " nu " , " ncp " , " c " ) )

LogLikeP0 <− Vecto r i z e (
function (d , t , nu , r ){

ncp <− d∗r
L <− sum(dt ( t , nu , ncp , log= TRUE))
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L
} , v e c t o r i z e . args=c ( "d " ) )

R code for one-sample t-test

EstimationOneSampleMix <− function ( t , n , alpha , ConCof ){

#Mixture model , one−sample t−t e s t

#### Input
# t : v e c t o r o f t−va l u e s
# n : vec t o r o f sample s i z e s
# alpha : s i g n i f i c a n c e l e v e l ( one s i ded t e s t , r i g h t t a i l )

#### Output
# d_e s t : e s t imate o f d e l t a
# SE_d : s tandard error o f d_e s t
# CI_d : con f idence i n t e r v a l f o r d e l t a
# p_e s t : e s t imate o f p
# SE_e s t : s tandard error o f p_e s t
# CI_p : con f idence i n t e r v a l f o r p
# X2: Chi−Square o f l i k e l i h o o d r a t i o t e s t , d f =1, H0 : d=0
# p : p−va lue a s s o c i a t e d wi th X2
# XX2: Chi Square o f l i k e l i h o o d r a t i o t e s t , d f =1, H0 : p=0
# pp : p−va lue a s s o c i a t e d wi th XX2

## Define s t a r t i n g va l u e s o f p and d f o r nlminb
ps t a r t <− c ( . 2 , . 5 , . 8 )
d s t a r t <− c (0 , . 2 , . 5 )

## Compute c r i t i c a l v a l u e s f o r a l l s t u d i e s ;
# r i s needed to compute d e l t a
nu <− n−1
c <− qt(1−alpha , nu)
r <− sqrt (n)

## Estimate d and p
f 1 <− function ( x )
−LogLike (x [ 1 ] , x [ 2 ] , t , nu , r , c )

# Checks l o c a l minima fo r d i f f e r e n t s t a r t i n g va l u e s de f ined above
fmax <− I n f
i <− 0
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f s <− rep (NA, length ( d s t a r t ) )
for ( p0 in p s t a r t ){

for ( d0 in d s t a r t ){
i <− i+1
# many warnings due to p r e c i s i on ( does not a f f e c t r e s u l t s )
suppressWarnings (

tmp <− nlminb (c ( d0 , log ( p0/(1−p0 ) ) ) , f 1 )
)
f s [ i ] <− tmp$ ob j e c t i v e

i f (tmp$ ob j e c t i v e <fmax ){
d_e s t <− tmp$par [ 1 ]
l_e s t <− tmp$par [ 2 ]
fmax <− tmp$ ob j e c t i v e

}
}

}
i f ( sd ( f s )>1e−3){

cat ( ’Check␣ s t a r t i n g ␣ va lue s \n ’ )
print ( f s )

}

p_e s t <− 1/(1+exp(− l_e s t ) )
SEtmp <− se (d_est , p_est , t , nu , r , c )
SE_d <− SEtmp$SE_d
SE_l <− SEtmp$SE_l
SE_p <− SEtmp$SE_p

## Confidence I n t e r v a l s
p1 <− (1−ConCof )/2
p2 <− ConCof+p1
z <− qnorm(c ( p1 , p2 ) , 0 , 1 )
CI_d <− d_e s t+z∗SE_d
CI_l <− l_e s t+z∗SE_l
CI_p <− 1/(1+exp(−CI_l ) )

## Compute l i k e l i h o o d r a t i o t e s t f o r d
f 0 <− function ( y ) −LogLike (0 , y , t , nu , r , c )
y <− nlminb ( log (p_e s t/(1−p_e s t ) ) , f 0 )$par
p_0 <− 1/(1+exp(−y ) )
X2 <− −2∗( LogLike (0 , log (p_0/(1−p_0 ) ) , t , nu , r , c ) −

LogLike (d_est , log (p_e s t/(1−p_e s t ) ) , t , nu , r , c ) )



EFFECT SIZE ESTIMATION – ESM 28

p <− 1−pchisq (abs (X2) , 1 )

## Compute l i k e l i h o o d r a t i o t e s t f o r p
f 0 <− function ( y ) −LogLikeP0 (y , t , nu , r )
y <− nlminb (d_est , f 0 )$par
XX2 <− −2∗( LogLikeP0 (y , t , nu , r ) −

LogLike (d_est , log (p_e s t/(1−p_e s t ) ) , t , nu , r , c ) )
pp <− 1−pchisq (abs (XX2) , 1 )

l i s t (d_e s t=d_est , SE_d=SE_d , CI_d=CI_d ,
p_e s t=p_est , SE_p=SE_p , CI_p=CI_p ,
X2=X2 , p=p , XX2=XX2, pp=pp)

}

## Fisher In fo f o r d and p se <− f unc t i on (d , p , t , nu , r , c ){
h <− 0 .0001
i f (p+h > 1)

p <− p−h
i f (p−h < 0)

p <− p+h

I <− matrix (NA, 2 ,2)
f <− function (d , p) LogLike (d , log (p/(1−p ) ) , t , nu , r , c )
I [ 1 , 1 ] <− −( f (d+h , p)−2∗ f (d , p)+ f (d−h , p ) )/h^2
I [ 2 , 2 ] <− −( f (d , p+h)−2∗ f (d , p)+ f (d , p−h ) )/h^2
I [ 1 , 2 ] <− −( f (d+h , p+h)+ f (d−h , p−h)− f (d−h , p+h)− f (d+h , p−h ) )/(4∗h^2)
I [ 2 , 1 ] <− I [ 1 , 2 ]
Cov <− solve ( I )
SE_d <− abs ( sqrt (Cov [ 1 , 1 ] ) )
SE_p <− abs ( sqrt (Cov [ 2 , 2 ] ) )

l <− log (p/(1−p ) )
f f <− function (d , l ) LogLike (d , l , t , nu , r , c )
I [ 1 , 1 ] <− −( f f (d+h , l )−2∗ f f (d , l )+ f f (d−h , l ) )/h^2
I [ 1 , 2 ] <− −( f f (d+h , l+h)+ f f (d−h , l−h)− f f (d−h , l+h)− f f (d+h , l−h ) )/(4∗h^2)
I [ 2 , 1 ] <− I [ 1 , 2 ]
I [ 2 , 2 ] <− −( f f (d , l+h)−2∗ f f (d , l )+ f f (d , l−h ) )/h^2
Cov <− solve ( I )
SE_l <− abs ( sqrt (Cov [ 2 , 2 ] ) )

l i s t (SE_d=SE_d , SE_p=SE_p , SE_l=SE_l )
}
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LogLike <− Vecto r i z e (
function (d , l , t , nu , r , c ){

p <− 1/(1+exp(− l ) )
ncp <− d∗r
# # for extreme va lues , p r e c i s i on o f d t ( ) / pt ( ) causes warnings
MLE <− sum( log (MixPdf ( t , p , nu , ncp , c ) ) )
MLE

} , v e c t o r i z e . args=c ( "d " , " l " ) )

MixPdf <− Vecto r i z e (
function ( t , p , nu , ncp , c ){

beta <− pt (c , nu , ncp )
A <− 1−p∗beta
I <− i f e l s e ( t<=c , 1 , 0)
# For the mixture model wi th suppre s s ing s i g n i f i c a n t r e s u l t s ,
# rep l a c e the next l i n e s wi th the preced ing l i n e s .
# A <− 1−p∗(1− be ta )
# i f e l s e ( t<=c , 0 , 1)
f <− dt ( t , nu , ncp )∗(1−p∗I )/A
f

} , v e c t o r i z e . args=c ( " t " , " nu " , " ncp " , " c " ) )

LogLikeP0 <− Vecto r i z e (
function (d , t , nu , r ){

ncp <− d∗r
L <− sum(dt ( t , nu , ncp , log= TRUE))
L

} , v e c t o r i z e . args=c ( "d " ) )

Appendix J
Model 3: R code for estimating δ of the mixture model for a two-sided t-test

In order to estimate δ and psp for a two-sided t-test, the function MixPdf in the
preceding code of Model 2 has to be replaced by the following function and α has to
be set to 0.025 instead to 0.05.

MixPdf<−Vecto r i z e (
function ( t , p , nu , ncp , c ){

A <− dt ( t , nu , ncp )
B <− pt (c , nu , ncp )
C <− pt(−c , nu , ncp )
pub l i sh <− 1−p∗(B−C)
I <− i f e l s e (abs ( t)>=c , 0 , 1 )
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f <− A/pub l i sh∗(1−p∗I )
f

} , v e c t o r i z e . args=c ( " t " , " nu " , " ncp " , " c " ) )
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