Kandler, C., Richter, J. \& Zapko-Willmes, A. (2019). The nature and nurture of HEXACO personality trait differences
An extended twin family study. Zeitschrift für Psychologie. https://doi.org/10.1027/2151-2604/a000378

Table S1. Intra-Class Correlations (ICC) and 95\% Confidence Intervals (CI) for Specific Twin Family Dyads

Family dyad	Genetic relation in \%	n dyads	HEXACO personality traits																		Average ICC
			Honesty-Humility			Emotionality			Extraversion			Agreeableness			Conscientiousness			Openness			
			ICC	95\% CI	p																
MZ twin pair	100	221	. 455	.343, . 554	<. 001	. 599	.507, . 677	<. 001	. 559	.461, . 643	<. 001	. 462	.351, . 560	<. 001	. 521	.418, . 611	<. 001	. 658	.576, . 727	<. 001	. 542
DZ twin pair	50	352	. 218	.116, . 316	<. 001	. 161	.056, . 261	. 001	. 263	.162, . 358	<. 001	. 155	. $051, .256$. 002	. 162	.058, . 263	. 001	. 278	.178, . 372	<. 001	. 206
Twins' mother \& twin a	50	208	. 142	.007, . 273	. 020	. 141	.005, . 272	. 021	. 253	.121, . 376	<. 001	. 055	-.082, 189	. 216	. 244	.112, . 368	<. 001	. 283	.153, . 403	<. 001	. 186
Twins' mother \& twin b	50	208	. 157	.018, . 290	. 013	. 094	-.046, . 230	. 093	. 322	.192, . 442	<. 001	-. 051	-.188, . 089	. 762	. 127	-.013, . 261	. 037	. 255	.120, .380	<. 001	. 151
Twins' father \& twin a	50	119	. 174	-.005,.343	. 028	. 169	-.010, . 338	. 032	. 219	.042, .383	. 008	. 089	-.092, . 264	. 168	. 016	-.164, . 194	. 433	. 160	-.019, . 330	. 040	. 138
Twins' father \& twin b	50	119	. 135	-. $049, .310$. 075	. 190	.008, . 361	. 021	. 248	.068, . 412	. 004	. 138	-.046, . 313	. 070	. 071	-.114, . 250	. 226	. 263	.085, . 426	. 002	. 174
Twin \& offspring	50	143	. 098	-. $067, .258$. 121	. 160	-.004, . 315	. 028	. 185	.022, 388	. 013	. 190	.028, 342	. 011	. 137	-. $027, .294$. 050	. 264	.105, . 409	. 001	. 172
Twin's spouse \& offspring	50	60	. 307	. $061, .518$. 008	-. 046	-.293, . 208	. 637	. 174	-.080,.408	. 089	. 023	-.229, . 273	. 429	. 280	.032, . 497	. 014	. 053	-.200, . 301	. 340	. 132
MZ twin and cotwin's child	50	68	. 158	-.081, . 380	. 096	. 329	.101, . 524	. 003	. 228	-.008, . 441	. 029	-. 003	-. $238, .234$. 508	. 195	-.043,.412	. 053	. 207	-. $030, .423$. 043	. 186
DZ twin and cotwin's child	25	72	. 002	-.228, . 231	. 494	. 116	-.116, . 337	. 162	-. 138	-.356, . 095	. 878	. 086	-. $145, .308$. 233	-. 039	-.266, 192	. 630	. 212	-.018, . 421	. 035	. 040
Twins' mother \& twin a's child	25	10	. 244	-.393, .734	. 224	. 405	-.231, .807	. 098	-. 114	-.652,.519	. 629	-. 128	-.640,.478	. 654	. 442	-. $188, .822$. 078	-. 220	-.711, . 434	. 744	. 105
Twins' mother \& twin b's child	25	11	. 074	-.505, . 619	. 403	-. 237	$-.702, .386$. 773	. 233	-. $374, .710$. 224	. 179	-.421, . 681	. 280	-. 245	-.706, . 379	. 780	-. 195	-.679,.424	. 729	-. 032
Twins' father \& twin a's child	25	10	-. 152	-. $674, .489$. 672	. 306	$-.335, .763$. 170	-. 109	-.649, . 522	. 624	-. 076	$-.630, .546$. 586	-. 128	-.660,.508	. 645	-. 142	-.668, 498	. 661	-. 050
Twins' father \& twin b's child	25	8	. 056	-.604, . 691	. 434	-. 005	-.641,.658	. 499	-. 032	-.657, .643	. 527	-. 486	-.858, . 257	. 910	. 149	-. $540, .737$. 339	-. 302	-.788, . 449	. 787	-. 103
MZ twins' offspring (cousins)	25	10	. 586	.007, . 877	. 024	-. 418	-.804, . 239	. 902	. 383	-.255,.798	. 112	. 109	-. $505, .663$. 367	-. 111	-.650, . 521	. 626	-. 322	-.761,.340	. 836	. 038
DZ twins' offspring (cousins)	12.5	18	-. 099	-. $523, .370$. 657	. 082	-. $379, .515$. 366	. 138	-.329, . 556	. 282	. 161	-.308, . 572	. 251	. 134	-.333, . 553	. 288	-. 432	-.737, .025	. 969	-. 003
Twins' parents	0	100	. 164	-. $032, .348$. 050	. 139	-.058, . 325	. 083	. 047	-. $149, .240$. 319	. 149	-.048, . 334	. 068	. 044	$-.152, .238$. 329	. 355	.172, . 515	<. 001	. 150
Twin \& spouse	0	228	. 232	.107, .351	<. 001	. 014	$-.115, .143$. 415	. 004	-. $125, .132$. 477	-. 062	-. $189, .068$. 825	-. 100	-.176, 081	. 769	. 287	.164, 401	<. 001	. 063
MZ twin \& cotwin's spouse	0	109	. 130	-.059, . 309	. 088	-. 144	-.322, 044	. 933	-. 033	-.219, . 154	. 636	-. 129	-.308, . 060	. 910	. 118	-.070, . 299	. 108	. 262	.079, . 428	. 003	. 034
DZ twin \& cotwin's spouse	0	114	. 192	.009, 363	. 020	. 101	-.083,. 279	. 141	. 237	.057, 403	. 005	-. 023	-.205,.160	. 597	-. 006	-. $188, .178$. 523	. 120	-.064, . 296	. 101	. 104
MZ twins' spouses	0	52	. 156	-. $118, .408$. 131	. 180	-.094, 429	. 097	-. 234	-.473,.039	. 954	. 296	.029, . 524	. 015	-. 133	-. 3888.141	. 830	-. 002	-.271, . 268	. 506	. 044
DZ twins' spouses	0	40	. 229	-. $083, .500$. 073	-. 012	-.317, . 296	. 530	. 099	-.214,. 394	. 268	. 047	-.262,. 349	. 383	-. 224	-.496,.163	. 921	-. 256	-.521, . 104	. 948	-. 020
Mother \& twins' spouse	0	34	-. 097	-. $414, .243$. 711	-. 141	-.451, . 201	. 791	. 122	-.217, 437	. 240	-. 012	-.341,.322	. 526	. 040	-.294, . 368	. 408	. 270	-.066,.553	. 056	. 030
Father \& twins' spouse	0	24	-. 141	-.504, . 268	. 750	-. 065	-.444, . 338	. 620	. 082	-. $319, .461$. 346	-. 021	-.408, . 376	. 539	. 516	.157, 756	. 004	. 439	.058, . 710	. 013	. 135
Twin's spouse \& cotwin's child	0	54	. 130	-. $138, .382$. 170	. 139	$-.130, .389$. 154	. 241	-.024, .476	. 037	-. 015	-.276,.248	. 544	-. 159	$-.406, .110$. 878	. 247	-.018, 480	. 034	. 097

Note. Dyads in boldface are part of the NTFM; dyads in italics are part of the SoTM; Bonferroni-corrected significant estimates ($p \leq .002$) are shown in bold.

Table S2. Nuclear Twin Family Model Analyses: Fit Statistics

Variables	Fit statistics					
	-2logL	$d f$	BIC*	$\Delta-2 \log \mathrm{~L}$	$\Delta d f$	Δp
Honesty-Humility						
Starting model ($\delta=0 ; s=0 ; m=f)$	7149.905	2575	-1399.120			
$d=0$	7153.359	2576	-1399.325	3.453	1	. 063
$m=f=0$	7149.905	2576	-1401.052	0.000	1	>.999
$\mu=0$	7152.425	2576	-1399.792	2.520	1	. 112
$d=m=f=\mu=0$	7154.781	2576	-1402.478	4.876	3	. 181
Emotionality						
Starting model ($\delta=0 ; s=0 ; m=f)$	7126.483	2581	-1422.422			
$d=0$	7149.648	2582	-1412.771	23.165	1	<. 001
$m=f=0$	7126.483	2582	-1424.353	0.000	1	>.999
$\mu=0$	7127.945	2582	-1423.622	1.462	1	. 227
$m=f=\mu=0$	7127.945	2583	-1425.554	1.462	2	. 482
Extraversion						
Starting model ($\delta=0 ; s=0 ; m=f$)	7089.211	2581	-1441.058			
$d=0$	7093.040	2582	-1441.075	3.829	1	. 051
$m=f=0$	7089.220	2582	-1442.985	0.009	1	. 925
$\mu=0$	7090.940	2582	-1442.125	1.729	1	. 189
$d=m=f=\mu=0$	7093.221	2584	-1444.848	4.009	3	. 260
Agreeableness						
Starting model ($\delta=0 ; s=0 ; m=f$)	7222.448	2580	-1372.508			
$d=0$	7243.300	2581	-1364.013	20.853	1	<. 001
$m=f=0$	7222.448	2581	-1374.439	0.000	1	>.999
$\mu=0$	7224.275	2581	-1373.526	1.828	1	. 176
$m=f=\mu=0$	7224.275	2582	-1375.457	1.828	2	. 401
Conscientiousness						
Starting model ($\delta=0 ; s=0 ; m=f$)	7160.013	2581	-1405.657			
$d=0$	7173.373	2582	-1400.909	13.359	1	<. 001
$m=f=0$	7160.013	2582	-1407.588	0.000	1	>.999
$\mu=0$	7160.239	2582	-1407.475	0.226	1	. 634
$m=f=\mu=0$	7160.239	2583	-1409.407	0.226	2	. 893
Openness						
Starting model ($\delta=0 ; s=0 ; m=f)$	6990.796	2581	-1490.265			
$d=0$	7013.261	2582	-1480.965	22.465	1	<. 001
$m=f=0$	6990.817	2582	-1492.187	0.020	1	. 887
$\mu=0$	7002.026	2582	-1486.582	11.229	1	. 001

Note. a : additive genetic parameter; e : nonshared environmental effects; d : nonadditive genetic effects due to emergenesis (perfectly correlated between MZ twins and $\delta=0$ for DZ twins); s : sibling-specific shared environmental effects; $m=f$: maternal and paternal shared environmental effects assumed to be equal; μ : assortative mating. The best fitting model is shown in boldface.
*Sample-size adjusted

Table S3. Spouses-of-Twins Model Analyses: Fit Statistics

Fit statistics						
Variables	-2logL	$d f$	BIC*	$\Delta-2 \log$ L	$\Delta d f$	Δp
Honesty-Humility						
Starting full ADE model ($a, d, e, \mu, u, \& v \neq 0$)	7502.476	2707	-1480.183			
$\mu=0$	7502.476	2708	-1482.116	0.000	1	>. 999
$u=0$	7508.646	2708	-1479.030	6.170	1	. 013
$v=0$	7503.830	2708	-1481.439	1.354	1	. 245
$\boldsymbol{\mu}=\mathbf{v}=0$	7505.165	2709	-1482.704	2.688	2	. 261
Openness						
Starting full ADE model ($a, d, e, \mu, u, \& v \neq 0$)	7370.553	2713	-1557.740			
$\mu=0$	7373.915	2714	-1557.992	3.362	1	. 067
$u=0$	7370.565	2714	-1559.667	0.012	1	. 914
$v=0$	7370.570	2714	-1559.664	0.017	1	. 898
$\boldsymbol{u}=\mathbf{v}=\mathbf{0}$	7370.571	2715	-1561.596	0.018	2	. 991
$\mu=u=v=0$	7406.474	2716	-1545.577	35.921	3	<. 001

[^0]

Figure S1: Robust correlation estimates for HEXACO personality traits. HH: Honesty-Humility; Em: Emotionality; eX: Extraversion; Ag: Agreeableness; Co: Conscientiousness; Op: Openness. The correlations are based on an 8 -group structural equation model (twin a, twin b, mothers, fathers, twin a's spouse, twin b's spouse, twin a's child, and twin b's child). The correlations could be constrained to be equal across groups without significant reduction of model fit ($\Delta-2 \log L=89.12 ; \Delta d f=105 ; \Delta p=.866$). Exact p-values are shown in parentheses. Statistically significant correlations ($p<.01$) are shown in bold and with solid double-headed arrows.

[^0]: Note. a : additive genetic parameter; d : nonadditive genetic effects due to emergenesis (perfectly correlated between MZ twins and $\delta=0$ for DZ twins); e : nonshared environmental effects; μ : phenotypic assortment; u : social homogamy; v: spouse-specific interaction effects.
 *Sample-size adjusted

