Skip to main content
Original communication

Hepatocyte growth factor as indicator for subclinical atherosclerosis

Published Online:https://doi.org/10.1024/0301-1526/a001111

Summary:Background: Hepatocyte growth factor (HGF) is a pleiotropic cytokine mainly produced by mesenchymal cells. After endothelial damage by oxidized low-density lipoprotein (LDL), HGF is produced and released into the circulation in response. Due to this mechanism HGF has been proposed as possible clinical biomarker for clinical as well as subclinical atherosclerosis. Patients and methods: The conducted study is an observational, single centre, cohort study, including 171 patients with at least one cardiovascular risk factor or already established cardiovascular disease (CVD). Each patient underwent 3D plaque volumetry of the carotid and femoral arteries as well as physical examination and record of the medical history. Additionally, plasma HGF and further laboratory parameters like high sensitivity C-reactive protein and LDL-cholesterol were determined. Results: 169 patients were available for statistical analysis. In bivariate correlation, HGF showed a highly significant correlation with total plaque volume (TPV, r=0.48; p<0.001). In receiver operating characteristic (ROC) analysis for high TPV, HGF showed an area under the curve (AUC) of 0.68 (CI 95%: 0.59–0.77, p<0.001) with a sensitivity of 78% and a specificity of 52% to predict high TPV at a cut-off of 959 ng/ml. In the ROC-analysis for the presence of CVD, HGF demonstrated an AUC of 0.65 (95% CI 0.55–0.73; p=0.01) with a sensitivity of 77% and a specificity of 52%. Conclusions: Higher plasma levels of HGF are associated with higher atherosclerotic plaque volume as measured by 3D-ultrasound.

References

  • 1 Gallo S, Sala V, Gatti S, Crepaldi T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci. 2015;129:1173–93. First citation in articleCrossrefGoogle Scholar

  • 2 Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;5(1):56. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Aziz M, Yadav K. Pathogenesis of atherosclerosis a review. Med Clin Rev. 2016;2(3):22. First citation in articleGoogle Scholar

  • 5 Wu MY, Li CJ, Hou MF, Chu PY, New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int J Mol Sci. 2017;18(10):2034. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Garg PK, Buzkova P, Wassell CL, Allison M, Criqui M, Larson NB, et al. Association of circulating hepatocyte growth factor and risk of incident peripheral artery disease: the multi-ethnic study of atherosclerosis. Angiology. 2020;71(6):544–51. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Bielinski SJ, Berardi C, Decker PA, Larson NB, Bell EJ, Pankow JS, et al. Hepatocyte growth factor demonstrates racial heterogeneity as a biomarker for coronary heart disease. heart. 2017;103(15):1185–93. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Morishita R, Aoki M, Yo Y, Ogihara T. Hepatocyte growth factor as cardiovascular hormone: role of HGF in the pathogenesis of cardiovascular disease. Endocr J. 2002;49(3):273–84. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Heeschen C, Dimmeler S, Hamm CW, Boersma E, Zeiher AM, Simoons ML. Prognostic significance of angiogenic growth factor serum levels in patients with acute coronary syndromes. Circulation. 2003;107(4):524–30. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Lin JW, Sheu WHH, Lee WJ, Chen YT, Liu TJ, Ting CT, et al. Circulating hepatocyte growth factor level but not basic fibroblast growth factor level is elevated in angiography-proven symptomatic peripheral artery disease. Angiology. 2007;58(4):420–8. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Bell EJ, Decker PA, Tsai MY, Pankow JS, Hanson NQ, Wassel CL, et al. Hepatocyte growth factor is associated with progression of atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA). atherosclerosis. 2018;272:162–7. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Konya H. Hepatocyte growth factor, a biomarker of macroangiopathy in diabetes mellitus. World J Diabetes. 2014;5(5):678. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Satani K, Konya H, Hamaguchi T, Umehara A, Katsuno T, Ishikawa T, et al. Clinical significance of circulating hepatocyte growth factor, a new risk marker of carotid atherosclerosis in patients with Type 2 diabetes. Diabet Med. 2006;23(6):617–22. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Matsumori A, Furukawa Y, Hashimoto T, Ono K, Shioi T, Okada M, et al. Increased circulating hepatocyte growth factor in the early stage of acute myocardial infarction. Biochem Biophys Res Commun. 1996;221:391–5. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Susen S, Sautière K, Mouquet F, Cuilleret F, Chmaït A, McFadden EP, et al. Serum hepatocyte growth factor levels predict long-term clinical outcome after percutaneous coronary revascularization. Eur Heart J. 2005;26(22):2387–95. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;2021:3227–337. First citation in articleCrossrefGoogle Scholar

  • 17 Lauer MS. Primary prevention of atherosclerotic cardiovascular disease: the high public burden of low individual risk. J Am Med Assoc. 2007;297(12):1376–8. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Kuulasmaa K, Tunstall-Pedoe H, Dobson A, Fortmann S, Sans S, Tolonen H, et al. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. The Lancet. 2000;355:375–87. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315–81. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Sillesen H, Muntendam P, Adourian A, Entrekin R, Garcia M, Falk E, et al. Carotid plaque burden as a measure of subclinical atherosclerosis: comparison with other tests for subclinical arterial disease in the high risk plaque bioimage study. JACC Cardiovasc Imaging. 2012;5(7):681–9. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Sommer P, Schreinlechner M, Noflatscher M, Lener D, Mair F, Theurl M, et al. High baseline fetuin-A levels are associated with lower atherosclerotic plaque progression as measured by 3D ultrasound. Atherosclerosis Plus. 2021;45:10–7. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Noflatscher M, Schreinlechner M, Sommer P, Theurl M, Berggren K, Kerschbaum J, et al. Influence of traditional cardiovascular risk factors on carotid and femoral atherosclerotic plaque volume as measured by three-dimensional ultrasound. J Clin Med. 2018;8(1):32. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis. 2012;34(4):290–296. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Schreinlechner M, Noflatscher M, Lener D, Bauer A, Kirchmair R, Marschang P, et al. NGAL correlates with femoral and carotid plaque volume assessed by sonographic 3D plaque volumetry. J Clin Med. 2020;9(9):2811. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Ogunmoroti O, Osibogun O, Ferraro RA, Ndunda PM, Larson NB, Decker PA, et al. Hepatocyte growth factor is associated with greater risk of extracoronary calcification: results from the multiethnic study of atherosclerosis. Open Heart. 2022;9(1):00–000. First citation in articleCrossrefGoogle Scholar

  • 26 Bell EJ, Larson NB, Decker PA, Pankow JS, Tsai MY, Hanson NQ, et al. Hepatocyte growth factor is positively associated with risk of stroke: The MESA (Multi-Ethnic Study of Atherosclerosis). Stroke. 2016;47(11):2689–94. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Decker PA, Larson NB, Bell EJ, Pankow JS, Hanson NQ, Wassel CL, et al. Increased hepatocyte growth factor levels over 2 years are associated with coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2019;213:30–4. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Ferraro RA, Ogunmoroti O, Zhao D, Ndumele CE, Rao V, Pandey A, et al. Hepatocyte growth factor and incident heart failure subtypes: the multi-ethnic study of atherosclerosis (MESA). J Card Fail. 2021;27(9):981–90. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Yoshitomi Y, Kojima S, Umemoto T, Kubo K, Matsumoto Y, Yano M, et al. Serum hepatocyte growth factor in patients with peripheral arterial occlusive disease. J Clin Endocrinol Metab. 1999;84(7):2425–8. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Rajpathak SN, Wang T, Wassertheil-Smoller S, Strickler HD, Kaplan RC, McGinn AP, et al. Hepatocyte growth factor and the risk of ischemic stroke developing among postmenopausal women: Results from the women’s health initiative. Stroke. 2010;5:857–62. First citation in articleCrossrefGoogle Scholar

  • 31 Schwaiger JP, Lamina C, Neyer U, König P, Kathrein H, Sturm W, et al. Carotid plaques and their predictive value for cardiovascular disease and all-cause mortality in hemodialysis patients considering renal transplantation: a decade follow-up. Am J Kidney Dis. 2006;47(5):888–97. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk. The ARIC (atherosclerosis risk in communities) study. J Am Coll Cardiol. 2010;55(15):1600–7. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Johri AM, Herr JE, Li TY, Yau O, Nambi V. Novel ultrasound methods to investigate carotid artery plaque vulnerability. J Am Soc Echocardiogr. 2017;30(2):139–48. First citation in articleCrossref MedlineGoogle Scholar

  • 34 López-Melgar B, Mass V, Nogales P, Sánchez-González J, Entrekin R, Collet-Billon A, et al. New 3-dimensional volumetric ultrasound method for accurate quantification of atherosclerotic plaque volume. JACC Cardiovasc Imaging. 2022;15(6):1124–35. First citation in articleCrossref MedlineGoogle Scholar