Skip to main content
Published Online:https://doi.org/10.1026/0033-3042.57.3.139

Zusammenfassung. Zahlreiche Tiermodelle haben entscheidend zur Aufklärung der neurobiopsychologischen Grundlagen von Angst und damit auch zum Verständnis von Angststörungen beigetragen. An zwei unterschiedlichen Tiermodellen, dem Elevated Plus-Maze und der potenzierten Schreckreaktion, sollen die verschiedenen Ansätze exemplarisch veranschaulicht werden. Ansätze zur Untersuchung individueller Differenzen habitueller Angstmerkmale ergeben sich bei der Betrachtung natürlich vorkommender Variation innerhalb einer Stammesgeneration, bei selektiven Züchtungen und bei genetisch manipulierten Modellen. Schließlich bestehen auch Möglichkeiten zur Untersuchung kognitiver Prozesse in Tieren. Auch zukünftig werden tierexperimentelle Ansätze wesentlich zu unserem Wissen um die behavioralen und neurobiologischen Grundlagen der Angst im Humanbereich beitragen.


Animal models for anxiety and anxiety disorders - Selected models and approaches to study individual differences

Abstract. Animal models of anxiety play a critical role in our understanding of the neurobiopsychological mechanisms underlying anxiety and anxiety disorders. We review different animal models with particular emphasis on the elevated plus-maze and the potentiated startle. Models to investigate interindividual differences in behavioural traits with respect to anxiety are observation of naturally occuring variation within one generation, breeding lines, and genetic models for a differential characterisation of the animals. We then point to possible approaches to investigate cognitive processses in animals. For the future, we still can expect that, with respect to the fundamental behavioural and neurobiological principles of anxiety and anxiety disorders, important portions of our knowledge and new ideas will be based on animal research.

Literatur

  • American Psychiatry Association (1980). Diagnostic and Statistical Manual of Mental Disorders, 1st ed . APA Press, Washington DC Google Scholar

  • Andreatini, R. , Blanchard, C. , Blanchard, R. , Brandão, M. L. , Carobrez, A. P. , Griebel, G. , Guimarães, F. S. , Handley, S. L. , Jenck, F. , Leite, J. R. , Rodgers, J. , Schenberg, L. C. , Da Cunha, C. , Graeff, F. G. (2001). The brain decade in debate: II: Panic or anxiety? From animal models to a neurobiological basis. Brazilian Journal of Medical and Biological Research , 34, 145– 154 CrossrefGoogle Scholar

  • Baas, J. M. P. , Grillon, C. , Böcker, K. B. E. , Brack, A. A. , Morgan, C. A. , Kenemans, L. , Verbaten, M. N. (2002). Benzodiazepines have no effect on fear-potentiated startle in humans. Psychopharmacology , 161, 233– 247 CrossrefGoogle Scholar

  • Bailey, S. J. , Toth, M. (2004). Variability in the benzodiazepine response of serotonin 5-HT1A receptor null mice displaying anxiety-like phenotype: Evidence for genetic modifiers in the 5-HT-mediated regulation of GABAA receptors. The Journal of Neuroscience , 24, 6343– 6351 CrossrefGoogle Scholar

  • Ballenger, J. C. (1999). Current treatments of the anxiety disorders in adults. Biological Psychiatry , 46, 1579– 1594 CrossrefGoogle Scholar

  • Bignami, G. (1965). Selection for high rates and low rates of avoidance conditioning in the rat. Animal Behaviour , 13, 221– 227 CrossrefGoogle Scholar

  • Bitsios, P. , Philpott, A. , Langley, R. W. , Bradshaw, C. M. , Szabadi, E. (1999). Comparison of the effects of diazepam on the fear-potentiated startle and the fear-inhibited light-reflex in man. Journal of Psychopharmacology , 13, 226– 234 CrossrefGoogle Scholar

  • Blanchard, D. C. , Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Annual Review of Psychology , 39, 43– 68 CrossrefGoogle Scholar

  • Blanchard, D. C. , Griebel, G. , Blanchard, R. J. (2001). Mouse defensive behaviors: Pharmacological and behavioral essays for anxiety and panic. Neuroscience & Biobehavioral Reviews , 25, 205– 218 CrossrefGoogle Scholar

  • Blizard, D. A. , Adams, N. (2002). The Maudsley Reactive and Nonreactive strains: A new perspective. Behavior Genetics , 32, 277– 299 CrossrefGoogle Scholar

  • Bolles, R. C. , Fanselow, M. S. (1980). A perceptual-defense-recuperative model of fear and pain. Behavioral and Brain Sciences , 3, 291– 323 CrossrefGoogle Scholar

  • Borsini, F. , Podhorna, J. , Marazziti, D. (2002). Do animal models of anxiety predict anxiolytic-like effects of antidepressants?. Psychopharmacology , 163, 121– 141 CrossrefGoogle Scholar

  • Borta, A. , Schwarting, R. K. W. (2005). Post-trial treatment with the nicotinic agonist metanicotine: Differential effects in Wistar rats with high versus low rearing activity. Pharmacology, Biochemistry and Behavior , 80, 541– 548 CrossrefGoogle Scholar

  • Brown, J. S. , Kalish, H. I. , Farber, I. E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. Journal of Experimental Psychology , 41, 317– 328 CrossrefGoogle Scholar

  • Canto-de-Souza, A. , Nunes-de-Souza, R. L. , Rodgers, R. J. (2002). Anxiolytic-like effect of way-100635 microinfusions into the median (but not dorsal) raphe nucleus in mice exposed to the plus-maze: Influence of prior test experience. Brain Research , 928, 50– 59 CrossrefGoogle Scholar

  • Carobrez, A. P. , Bertoglio, L. J. (2005). Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neuroscience and Biobehavioral Reviews , 29, 1193– 1205 CrossrefGoogle Scholar

  • Connor, K. M. , Davidson, J. R. T. (1998). Generalized anxiety disorder: Neurobiological and pharmacotherapeutic perspectives. Biological Psychiatry , 44, 1286– 1294 CrossrefGoogle Scholar

  • Connor, T. J. , Song, C. , Leonard, B. E. , Merali, Z. , Anisman, H. (1998). An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience , 84, 923– 933 CrossrefGoogle Scholar

  • Davis, M. (1998a). Anatomic and physiologic substrates of emotion in an animal model. Journal of Clinical Neurophysiology , 15, 378– 387 CrossrefGoogle Scholar

  • Davis, M. (1998b). Are different parts of the extended amygdala involved in fear versus anxiety?. Biological Psychiatry , 44, 1239– 1247 CrossrefGoogle Scholar

  • Davis, M. , Falls, W. A. , Campeau, S. , Kim, M. (1993). Fear-potentiated startle: A neural and pharmacological analysis. Behavioural Brain Research , 58, 175– 198 CrossrefGoogle Scholar

  • Davis, M. , Redmond Jr., D. E. , Baraban, J. M. (1979). Norad-renergic agonists and antagonists: Effects on conditioned fear as measured by the potentiated startle paradigm. Psychopharmacology , 65, 111– 118 CrossrefGoogle Scholar

  • Davis, M. , Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry , 6, 13– 34 CrossrefGoogle Scholar

  • de Jongh, R. , Groenink, L. , van Der Gugten, J. , Olivier, B. (2002). The light-enhanced startle paradigm as a putative model for anxiety: Effects of chlordiazepoxide, flesinoxan and fluvoxamine. Psychopharmacology , 159, 176– 180 CrossrefGoogle Scholar

  • Deakin, J. F. W. , Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology , 5, 305– 315 CrossrefGoogle Scholar

  • Dellu, F. , Piazza, P. V. , Mayo, W. , Le Moal, M. , Simon, H. (1996). Novelty-seeking in rats - biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology , 34, 136– 145 CrossrefGoogle Scholar

  • Dere, E. , De Souza-Silva, M. A. , Spieler, R. E. , Lin, J. S. , Ohtsu, H. , Haas, H. L. , Huston, J. P. (2004). Changes in motoric, exploratory and emotional behaviours and neuronal acetylcholine content and 5-HT turnover in histidine decarboxylase-KO mice. European Journal of Neuroscience , 20, 1051– 1058 CrossrefGoogle Scholar

  • Dubrovksy, B. O. (2005). Steroids, neuroactive steroids and neurosteroids in psychopathology. Progress in Neuro-Psychopharmacology & Biological Psychiatry , 29, 169– 192 CrossrefGoogle Scholar

  • Dykman, R. A. , Gantt, W. H. (1960). A case of experimental neurosis and recovery in relation to the orienting response. Journal of Psychology , 50, 105– 110 CrossrefGoogle Scholar

  • Ellenbroek, B. A. , Cools, A. R. (2002). Apomorphine susceptibility and animal models for psychopathology: genes and environment. Behavior Genetics , 32, 349– 361 CrossrefGoogle Scholar

  • Engel, S. R. , Grant, K. A. (2001). Neurosteroids and behavior. International Review of Neurobiology , 46, 321– 348 CrossrefGoogle Scholar

  • Fendt, M. , Siegl, S. , Steiniger-Brach, B. (2005). Noradrenaline transmission within the ventral bed nucleus of the stria terminalis is critical for fear behavior induced by trimethylthiazoline, a component of fox odor. The Journal of Neuroscience , 25, 5998– 6004 CrossrefGoogle Scholar

  • Fernandes, C. , File, S. E. (1996). The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacology, Biochemistry and Behavior , 54, 31– 40 CrossrefGoogle Scholar

  • Fernández-Teruel, A. , Escorihuela, R. M. , Gray, J. A. , Aguilar, R. , Gil, L. , Giménez-Llort, L. , Tobeña, A. , Bhomra, A. , Nicod, A. , Mott, R. , Driscoll, P. , Dawson, G. R. , Flint, J. (2002). A quantitative trait locus influencing anxiety in the laboratory rat. Genome Research , 12, 618– 626 CrossrefGoogle Scholar

  • File, S. E. , Gonzalez, L. E. , Gallant, R. (1998). Role of the basolateral nucleus of the amygdala in the formation of a phobia. Neuropsychopharmacology , 19, 397– 405 CrossrefGoogle Scholar

  • Finn, D. A. , Rutledge-Gorman, M. T. , Crabbe, J. C. (2003). Genetic animal models of anxiety. Neurogenetics , 4, 109– 135 Google Scholar

  • Geller, I. , Seifter, J. (1960). The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia , 1, 482– 492 CrossrefGoogle Scholar

  • Gewirtz, J. C. , McNish, K. A. , Davis, M. (1998). Lesions of the bed nucleus of the stria terminalis block sensitization of acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Progress in Neuro-Psychopharmacology and Biological Psychiatry , 22, 625– 648 CrossrefGoogle Scholar

  • Graeff, F. G. (1994). Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in animals. Brazilian Journal of Medical and Biological Research , 27, 811– 829 Google Scholar

  • Graeff, F. G. , Zangrossi, Jr., H. (2002). Animal models of anxiety. In H. D’haenen, J. A. den Boer & P. Willner (Eds.), Biological Psychiatry (pp. 879-893). Chichester: Wiley Google Scholar

  • Gray, J. A. (1982). The Neuropsychology of Anxiety . Oxford: Oxford University Press Google Scholar

  • Gray, J. A. , McNaughton, N. (2000). The Neuropsychology of Anxiety . Oxford: Oxford University Press Google Scholar

  • Grillon, C. (2002). Startle reactivity and anxiety disorders: Aversive conditioning, context, and neurobiology. Biological Psychiatry , 52, 958– 975 CrossrefGoogle Scholar

  • Grillon, C. , Ameli, R. , Woods, S. W. , Merikangas, K. , Davis, M. (1991). Fear-potentiated startle in humans: Effects of anticipatory anxiety on the acoustic blink reflex. Psychophysiology , 28, 588– 595 CrossrefGoogle Scholar

  • Grillon, C. , Pellowski, M. , Merikangas, K. R. , Davis, M. (1997). Darkness facilitates the acoustic startle reflex in humans. Biological Psychiatry , 42, 461– 471 CrossrefGoogle Scholar

  • Gross, C. , Zhuang, X. , Stark, K. , Ramboz, S. , Oosting, R. , Kirby, L. , Santarelli, L. , Beck, S. , Hen, R. (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature , 416, 396– 400 CrossrefGoogle Scholar

  • Gross, C. , Hen, R. (2004). The developmental origins of anxiety. Nature Reviews Neuroscience , 5, 545– 552 CrossrefGoogle Scholar

  • Hall, C. S. (1934). Emotional behavior in the rat. I Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology , 18, 385– 403 CrossrefGoogle Scholar

  • Hamilton, J. A. , Ballachey, E. L. (1934). An instance of Umweg behavior in the rat. Journal of Genetic Psychology , 45, 260– 261 Google Scholar

  • Hamm, A. O. , Vaitl, D. (1996). Affective learning: Awareness and aversion. Psychophysiology , 33, 451– 458 CrossrefGoogle Scholar

  • Handley, S. L. , McBlane, J. W. (1993). 5-HT drugs in animal models of anxiety. Psychopharmacology , 112, 13– 20 CrossrefGoogle Scholar

  • Ho, Y. J. , Eichendorff, J. , Schwarting, R. K. W. (2002). Individual profiles of male Wistar rats in animal models of anxiety and depression. Behavioural Brain Research , 136, 1– 12 CrossrefGoogle Scholar

  • Hofmann, S. G. , Meuret, A. E. , Smits, J. A. J. , Simon, N. M. , Pollack, M. H. , Eisenmenger, K. , Shiekh, M. , Otto, M. W. (2006). Augmentation of exposure therapy with d-cycloserine for social anxiety disorder. Archives of General Psychiatry , 63, 298– 304 CrossrefGoogle Scholar

  • Holmes, A. , Yang, R. J. , Lesch, K. P. , Crawley, J. N. , Murphy, D. L. (2003). Mice lacking the serotonin transporter exhibit 5-HT1A receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology , 28, 2077– 2088 Google Scholar

  • Holsboer, F. (1999). The rationale for corticotropin-releasing hormone receptor (CRH-H) antagonists to treat depression and anxiety. Journal of Psychiatric Research , 33, 181– 214 CrossrefGoogle Scholar

  • Huber, D. , Veinante, P. , Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science , 308, 245– 248 CrossrefGoogle Scholar

  • Keck, M. E. , Welt, T. , Müller, M. B. , Uhr, M. , Ohl, F. , Wigger, A. , Toschi, N. , Holsboer, F. , Landgraf, R. (2003). Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology , 28, 235– 243 CrossrefGoogle Scholar

  • Kehne, J. H. , Davis, M. (1985). Central norardenergic involvement in yohimbine excitation of acoustic startle: Effects of DSP4 and 6-OHDA. Brain Research , 330, 31– 41 CrossrefGoogle Scholar

  • Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology , 59, 107– 128 CrossrefGoogle Scholar

  • Koch, M. , Fendt, M. (2003). Startle response modulation as a behavioral tool in neuropsychopharmacology. Current Neuropharmacology , 1, 175– 185 CrossrefGoogle Scholar

  • Landgraf, R. , Wigger, A. (2002). High vs low anxiety-related behavior rats: An animal model of extremes in trait anxiety. Behavior Genetics , 32, 301– 314 CrossrefGoogle Scholar

  • Lang, P. J. , Bradley, M. M. , Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review , 97, 377– 395 CrossrefGoogle Scholar

  • Lathe, R. (2004). The individuality of mice. Genes, Brain and Behavior , 3, 317– 327 CrossrefGoogle Scholar

  • LeDoux, J. E. (1987). Emotion. In F. Plum (Ed.), Handbook of Physiology: Sec.1, Neurophysiology: Vol 5. Higher Functions of the Brain (pp. 416-459). Bethesda, MD: American Physiological Society Google Scholar

  • LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review of Psychology , 46, 209– 235 CrossrefGoogle Scholar

  • Liebsch, G. , Wotjak, C. T. , Landgraf, R. , Engelmann, M. (1996). Septal vasopressin modulates anxiety-related behaviour in rats. Neuroscience Letters , 217, 101– 104 CrossrefGoogle Scholar

  • Marks, I. M. (1987). Fears, Phobias, and Rituals: Panic, Anxiety, and Their Disorders . New York: Oxford University Press Google Scholar

  • Mineka, S. , Tomarken, A. J. (1989). The role of cognitive biases in the origins and maintenance of fear and anxiety disorders. In T. Archer & L.-G. Nilsson (Eds.), Aversion, Avoidance and Anxiety: Perspectives on Aversively Motivated Behavior (pp. 195-221). Hilsdale, New Jersey: Erlbaum Google Scholar

  • Montgomery, K. C. (1958). The relation between fear induced by novel stimulation and exploratory behaviour. Journal of Comparative and Physiological Psychology , 48, 254– 260 CrossrefGoogle Scholar

  • Morgan, C. A. , Southwick, S. M. , Grillon, C. , Davis, M. , Krystal, J. H. , Charney, D. S. (1993). Yohimbine - facilitated acoustic startle reflex in humans. Psychopharmacology , 110, 342– 346 CrossrefGoogle Scholar

  • Morgan, C. A. , Grillon, C. , Southwick, S. M. , Nagy, S. M. , Davis, M. , Krystal, J. H. , Charney, D. S. (1995). Yohimbine facilitated acoustic startle in combat veterans with post-traumatic stress disorder. Psychopharmacology , 117, 466– 471 CrossrefGoogle Scholar

  • Mucha, R. F. (1998). Grundlagen der angewandten Motivationsforschung. In E. Irle & H. J. Markowitsch (Hrsg.), Enzykopädie der Psychologie: Vergleichende Psychobiologie (S. 541-652). Göttingen: Hogrefe Google Scholar

  • Müller, M. B. , Zimmermann, S. , Sillaber, I. , Hagemeyer, T. P. , Deussing, J. M. , Timpl, P. , Kormann, M. S. D. , Droste, S. K. , Kühn, R. , Reul, J. M. H. M. , Holsboer, F. , Wurst, W. (2003). Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience , 6, 1100– 1107 CrossrefGoogle Scholar

  • Murgatroyd, C. , Wigger, A. , Frank, E. , Singewald, N. , Bunck, M. , Holsboer, F. , Landgraf, R. , Spengler, D. (2004). Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. The Journal of Neuroscience , 24, 7762– 7770 CrossrefGoogle Scholar

  • Nunes-de-Souza, R. L. , Canto-de-Souza, A. , Rodgers, R. J. (2002). Effects of intra-hippocampal infusion of WAY-100635 on plus-maze behavior in mice. Influence of site of injection and prior test experience. Brain Research , 927, 87– 96 CrossrefGoogle Scholar

  • Panksepp, J. (1982). Toward a general psychobiological theory of emotions. Behavioural and Brain Sciences , 5, 407– 467 CrossrefGoogle Scholar

  • Paul, E. S. , Harding, E. J. , Mendl, M. (2005). Measuring emotional processes in animals: The utility of a cognitive approach. Neuroscience & Biobehavioral Reviews , 29, 469– 491 CrossrefGoogle Scholar

  • Pauli, P. , Diedrich, O. , Müller, A. (2002). Covariation bias in the affect-modulated startle paradigm. Journal of Behavior Therapy & Experimental Psychiatry , 33, 191– 202 CrossrefGoogle Scholar

  • Pauli, P. , Montoya, P. , Martz, G.-E. (1996). Covariation bias in panic-prone individuals. Journal of Abnormal Psychology , 105, 658– 662 CrossrefGoogle Scholar

  • Pawlak, C. R. , Ho, Y. J. , Schwarting, R. K. W. , Bauhofer, A. (2003). Relationship between striatal levels of interleukin-2 mRNA and plus-maze behaviour in the rat. Neuroscience Letters , 341, 205– 208 CrossrefGoogle Scholar

  • Pawlak, C. R. , Schwarting, R. K. W. (2002). Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacology, Biochemistry and Behavior , 73, 679– 687 CrossrefGoogle Scholar

  • Pawlak, C. R. , Schwarting, R. K. W. (2006). Striatal microinjections of interleukin-2 and rat behaviour in the elevated plus-maze. Behavioural Brain Research , 168, 339– 344 CrossrefGoogle Scholar

  • Pawlak, C. R. , Schwarting, R. K. W. (2006). Striatal microinjections of interleukin-2 affects rat behaviour in an open field . Manuscript in preparation Google Scholar

  • Pawlak, C. R. , Schwarting, R. K. W. , Bauhofer, A. (2005). Cytokine mRNA levels in brain and peripheral tissues of the rat: Relationships with plus-maze behaviour. Brain Research Molecular Brain Research , 137, 159– 165 CrossrefGoogle Scholar

  • Pellow, S. , Chopin, P. , File, S. E. , Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods , 14, 149– 167 CrossrefGoogle Scholar

  • Pinel, J. P. J. , Treit, D. (1978). Burying as a defensive response in rats. Journal of Comparative and Physiological Psychology , 92, 708– 712 CrossrefGoogle Scholar

  • Pinel, J. P. J. , Wilkie, D. M. (l983). Conditioned defensive burying: A biological and cognitive approach to avoidance learning. In R. L. Mellgren (Ed.), Animal Cognition and Behaviour (pp. 285-318). Amsterdam: North-Holland Publishing Google Scholar

  • Ramos, A. , Morméde, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience & Biobehavioral Reviews , 22, 33– 57 CrossrefGoogle Scholar

  • Rapoport, J. L. (1991). Recent advances in obsessive-compulsive disorder. Neuropsychopharmacology , 5, 1– 10 Google Scholar

  • Ressler, K. J. , Rothbaum, B. O. , Tannenbaum, L. , Anderson, P. , Graap, K. , Zimand, E. , Hodges, L. , Davis, M. (2004). Cognitive enhancers as adjuncts to psychotherapy. Use of d-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry , 61, 1136– 1144 CrossrefGoogle Scholar

  • Riba, J. , Rodriguez-Fornells, A. , Urbano, G. , Morte, A. , Antonijoan, R. , Barbanoj, M. J. (2001). Differential effects of alprazolam on the baseline and fear-potentiated startle reflex in humans: A dose-response study. Psychopharmacology , 157, 358– 367 CrossrefGoogle Scholar

  • Rodgers, R. J. (1997). Animal models of ‘anxiety’: Where next?. Behavioural Pharmacology , 8, 477– 496 CrossrefGoogle Scholar

  • Rodgers, R. J. , Cao, B. J. , Dalvi, A. , Holmes, A. (1997). Animal models of anxiety: An ethological perspective. Brazilian Journal of Medical and Biological Research , 30, 289– 304 CrossrefGoogle Scholar

  • Sarter, M. , Markowitsch, H. J. (1985). Involvement of the amygdala in learning and memory: A critical review, with emphasis on anatomical relations. Behavioral Neuroscience , 99, 342– 380 CrossrefGoogle Scholar

  • Schwabe, K. , Klein, S. , Koch, M. (2006). Behavioural effects of neonatal lesions of the medial prefrontal cortex and subchronic pubertal treatment with phencyclidine of adult rats. Behavioural Brain Research , 168, 150– 160 CrossrefGoogle Scholar

  • Schwarting, R. K. W. , Thiel, C. M. , Müller, C. P. , Huston, J. P. (1998). Relationship between anxiety and serotonin in the ventral striatum. NeuroReport , 9, 1025– 1029 CrossrefGoogle Scholar

  • Schwarting, R. K. W. , Pawlak, C. R. (2004). Behavioral neuroscience in the rat: Taking the individual into account. Methods and Findings in Experimental and Clinical Pharmacology , 26, Suppl. 2 17– 22 Google Scholar

  • Schweimer, J. , Fendt, M. , Schnitzler, H. U. (2005). Effects of clonidine injections into the bed nucleus of the stria terminalis on fear and anxiety behavior in rats. European Journal of Pharmacology , 507, 117– 124 CrossrefGoogle Scholar

  • Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review , 77, 406– 418 CrossrefGoogle Scholar

  • Steimer, T. , Driscoll, P. (2005). Inter-individual vs line/strain differences in psychogenetically selected Roman High- (RHA) and Low-(RLA). Avoidance rats: neuroendocrine and behavioural aspects. Neuroscience & Biobehavioral Reviews , 29, 99– 112 CrossrefGoogle Scholar

  • Stein, D. J. , Bouwer, C. (1997). A neuro-evolutionary approach to the anxiety disorders. Journal of Anxiety Disorders , 4, 409– 429 CrossrefGoogle Scholar

  • Swanson, C. J. , Bures, M. , Johnson, M. P. , Linden, A.-M. , Monn, J. A. , Schoepp, D. D. (2005). Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nature Reviews Drug Discovery , 4, 131– 146 CrossrefGoogle Scholar

  • Swerdlow, N. R. , Geyer, M. A. , Vale, W. W. , Koob, G. F. (1996). Corticotropin-releasing factor potentiates acoustic startle in rats: Blockade by chlordiazepoxide. Psychopharmacology , 88, 147– 152 CrossrefGoogle Scholar

  • Thiel, C. M. , Müller, C. , Huston, J. P. , Schwarting, R. K. W. (1999). High vs. low reactivity to a novel environment: Behavioural, pharmacological and neurochemical assessments. Neuroscience , 93, 243– 251 CrossrefGoogle Scholar

  • Timpl, P. , Spanagel, R. , Sillaber, I. , Kresse, A. , Reul, J. M. H. M. , Stalla, G. K. , Blanquet, V. , Steckler, T. , Holsboer, F. , Wurst, W. (1998). Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genetics , 19, 162– 166 CrossrefGoogle Scholar

  • Toufexis, D. J. , Davis, C. , Hammond, A. , Davis, M. (2004). Progesterone attenuates corticotropin-releasing factor-enhanced baut not fear-potentiated startle via the activity of its neuroactive metabolite, allopregnanolone. The Journal of Neuroscience , 24, 10280– 10287 CrossrefGoogle Scholar

  • Treit, D. (1985). Animal models for the study of anti-anxiety agents: A review. Neuroscience & Biobehavioral Reviews , 9, 203– 222 CrossrefGoogle Scholar

  • van Gaalen, M. M. , Stenzel-Poore, M. P. , Holsboer, F. , Steckler, T. (2002). Effects of transgenic overproduction of CRH on anxiety-like behaviour. European Journal of Neuroscience , 15, 2007– 2015 CrossrefGoogle Scholar

  • Walker, D. L. , Davis, M. (1997). Anxiogenic effects of high illumination levels assessed with the acoustic startle paradigm. Biological Psychiatry , 42, 461– 471 CrossrefGoogle Scholar

  • Walker, D. , Ressler, K. J. , Lu, K.-T. , Davis, M. (2002). Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. The Journal of Neuroscience , 22, 2343– 2351 Google Scholar

  • Walker, D. L. , Toufexis, D. J. , Davis, M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology , 463, 199– 216 CrossrefGoogle Scholar

  • Wall, P. M. , Messier, C. (2001). Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neuroscience & Biobehavioral Reviews , 25, 275– 286 CrossrefGoogle Scholar

  • Wichers, M. , Maes, M. (2002). The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. International Journal of Neuropsychopharmacology , 5, 375– 388 CrossrefGoogle Scholar

  • Wigger, A. , Sánchez, M. M. , Mathys, K. C. , Ebner, K. , Frank, E. , Liu, D. , Kresse, A. , Neumann, I. D. , Holsboer, F. , Plotsky, P. M. , Landgraf, R. (2004). Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: Critical role of vasopressin. Neuropsychopharmacology , 29, 1– 14 CrossrefGoogle Scholar

  • Willner, P. (1984). The validity of animal models of depression. Psychopharmacology , 83, 1– 16 CrossrefGoogle Scholar

  • Yilmazer-Hanke, D. M. , Faber-Zuschratter, H. , Linke, R. , Schwegler, H. (2002). Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred Roman high- and low-avoidance rats. European Journal of Neuroscience , 15, 1206– 1218 CrossrefGoogle Scholar