Skip to main content
Published Online:https://doi.org/10.1026/0033-3042.57.3.154

Zusammenfassung. Aus der Perspektive der Biologischen Psychologie sind Furcht und Angst durch die Aktivierung eines Defensivsystems gekennzeichnet, welches sowohl die Enkodierung bedrohlicher Reize reguliert als auch die Organisation automatisch ablaufender Reaktionsprogramme übernimmt. Im Tiermodell wurde vor allem die Amygdala als zentrale Schaltstation dieses Defensivsystems herausgearbeitet, wobei diese Struktur sensorische Eingänge aus dem Thalamus und Kortex erhält und efferente Projektionen in verschiedene Strukturen des Kortex, Zwischen- und Mittelhirns sowie des Hirnstamms aussendet. Somit interagiert dieses affektive System mit einer ganzen Reihe kortikaler Regionen und kognitiver Funktionen. Pathologische Formen von Furcht und Angst unterscheiden sich nicht prinzipiell von normalen affektiven Reaktionen. Es liegt aber eine Sensibilisierung des Defensivsystems vor. Dies führt dazu, dass das Defensivsystem bereits bei geringer raum-zeitlicher Nähe und Intensität des bedrohlichen Reizes spezifisches Abwehrverhalten initiiert (z.B. Vorbereitung zur Flucht). Gleichzeitig wird das perzeptuelle System gebahnt, was zu einer weiteren Sensibilisierung des Systems beiträgt. Bei chronifizierten Angstzuständen befindet sich das Defensivsystem in permanent erhöhter Erregungsbereitschaft, die Umgebung wird ständig nach potenziell bedrohlichen Hinweisreizen (dies können auch interozeptive Reize sein) abgesucht (Hypervigilanz) und auch die defensive Reaktionsbereitschaft ist chronisch erhöht (z.B. vegetative Übererregbarkeit und motorische Spannung).


When fear and anxiety derail: The pathology of the human defense system

Abstract. From the perspective of Biological Psychology, fear and anxiety are emotional states that activate a defense system in the mammalian brain. This defense system regulates the encoding of threatening stimuli and organizes the response output to adjust to the threat. Animal data suggest that the amygdala is the core structure in this defense system. The amygdala receives sensory inputs from the thalamus and the cortex and sends efferent projections to several areas in the cortex, the diencephalon, midbrain, and brain stem. Thus, the affective system interacts with several cortical areas and cognitive functions. Pathological forms of fear and anxiety are not principally different from normal emotional responses. Rather there is a sensitization of the defense system. Therefore, defensive behaviour is already activated at a lower intensity or proximity of the threatening stimulus. Simultaneously, the perceptual system is primed for detecting threatening stimuli in the environment, further sensitizing the defense system. In states of chronic anxiety this defense system is permanently alert, scanning the environment for potentially threatening cues (these can also be interoceptive cues) (hypervigilance), and also priming defensive behavior and increasing autonomic arousal.

Literatur

  • Alheid, G. , deOlmos, J. S. , Beltramino, C. A. (1995). Amygdala and extended amygdala. In G. Paxinos (Ed.), The rat nervous system (pp. 495-578). New York: Academic Press Google Scholar

  • Amaral, D. , Behniea, H. , Kelly, J. L. (2003). Topographic organization of projections form the amygdala to the visual cortex in the macaque monkey. Neuroscience , 118, 1099– 1120 CrossrefGoogle Scholar

  • Barlow, D. H. (2002). Anxiety and its disorders . New York: Guilford Press Google Scholar

  • Barlow, D. H. , Chorpita, B. F. , Turovsky, J. (1996). Fear, panic, anxiety, and disorders of emotion. In D. A. Hope (Ed.), Perspectives on anxiety, panic, and fear (The 43rd Annual Nebraska Symposium on Motivation) (pp. 251-328). Lincoln: Nebraska University Press Google Scholar

  • Bouton, M. E. (1994). Conditioning, remembering, and forgetting. Journal of Experimental Psychology: Animal Behavior Processes , 20, 219– 233 CrossrefGoogle Scholar

  • Bouton, M. E. , Mineka, S. , Barlow, D. H. (2001). A modern learning perspective on the etiology of panic disorder. Psychological Review , 108, 4– 32 CrossrefGoogle Scholar

  • Büchel, C. , Dolan, R. J. (2000). Classical fear conditioning in functional neuroimaging. Current Opinion in Neurobiology , 10, 219– 223 CrossrefGoogle Scholar

  • Campbell, B. A. , Wood, G. , McBride, T. (1997). Origins of orienting and defensive responses: an evolutionary perspective. In P. J. Lang, R. F. Simons & M. T. Balaban (Eds.), Attention and orienting: sensory and motivational processes (pp. 41-67). Mahwa, NJ: Lawrence Erlbaum Associates Google Scholar

  • Catani, M. , Jones, D. K. , Donato, R. , ffytche, D. H. (2003). Occipito-temporal connections in the human brain. Brain , 126, 2093– 2107 CrossrefGoogle Scholar

  • Cuthbert, B. N. , Lang, P. J. , Strauss, C. , Drobes, D. , Patrick, C. J. , Bradley, M. M. (2003). The psychophysiology of anxiety disorder: fear memory imagery. Psychophysiology , 40, 407– 422 CrossrefGoogle Scholar

  • Cuthbert, B. N. , Schupp, H. T. , Bradley, M. M. , Birbaumer, N. , Lang, P. J. (2000). Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biological Psychology , 52, 95– 111 CrossrefGoogle Scholar

  • Davis, M. (1998). Are different parts of the extended amygdala involved in fear versus anxiety?. Biological Psychiatry , 44, 1239– 1244 CrossrefGoogle Scholar

  • Davis, M. , Lang, P. J. (2003). Emotion. In M. Gallagher, R. J. Nelson & I. B. Weiner (Eds.) Handbook of Psychology, Vol. 3, Biological Psychology (pp. 405-439). New York: Wiley CrossrefGoogle Scholar

  • Falls, W. A. , Miserendino, M. J. D. , Davis, M. (1992). Extinction of fear potenziated startle: blokkade by infusion of an NMDA antagonist into the amygdala. Journal of Neuroscience , 12, 854– 863 Google Scholar

  • Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin Review , 1, 429– 438 CrossrefGoogle Scholar

  • Fendt, M. , Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews , 23, 743– 760 CrossrefGoogle Scholar

  • Globisch, J. , Hamm, A. O. , Esteves, F. , Öhman, A. (1999). Fear appears fast: temporal course of startle reflex potentiation in animal fearful subjects. Psychophysiology , 36, 66– 75 CrossrefGoogle Scholar

  • Grillon, C. , Ameli, R. , Woods, S. W. , Merikangas, K. R. , Davis, M. (1991). Fear potentiated startle in humans: effects of anticipatory anxiety using the fear potentiated startle reflex. Psychophysiology , 30, 340– 346 CrossrefGoogle Scholar

  • Grillon, C. , Ameli, R. , Goddard, A. , Woods, S. W. , Davis, M. (1994). Baseline and fear-potentiated startle in panic disorder patients. Biological Psychiatry , 35, 431– 439 CrossrefGoogle Scholar

  • Hamm, A. O. (1997). Furcht und Phobien . Göttingen: Hogrefe Google Scholar

  • Hamm, A. O. , Vaitl, D. (1996). Affective learning: awareness and aversion. Psychophysiology , 33, 698– 710 CrossrefGoogle Scholar

  • Hamm, A. O. , Weike, A. I. (2005). The neuropsychology of fear learning and fear regulation. International Journal of Psychophysiology , 57, 5– 14 CrossrefGoogle Scholar

  • Hamm, A. O. , Cuthbert, B. N. , Globisch, J. , Vaitl, D. (1997). Fear and the startle reflex: blink modulation and autonomic response patterns in animal and mutilation fearful subjects. Psychophysiology , 34, 97– 107 CrossrefGoogle Scholar

  • Hamm, A. O. , Weike, A. I. , Schupp, H. T. , Treig, T. , Dressel, A. , Kessler, C. (2003). Affective blindsight: intact fear conditioning to a visual cue in a cortically blind patient. Brain , 126, 267– 275 CrossrefGoogle Scholar

  • Jones, H. E. , Jones, M. C. (1928). A study of fear. Childhood and Education , 5, 136– 143 CrossrefGoogle Scholar

  • Junghöfer, M. , Bradley, M. M. , Elbert, T. R. , Lang, P. J. (2001). Fleeting images: a new look at early emotion discrimination. Psychophysiology , 38, 175– 178 CrossrefGoogle Scholar

  • Lang, P. J. , McTeague, L. M. , Cuthbert, B. N. (in press) Fear, startle, and the anxiety disorder spectrum. In B. Rothbaum (Ed.), The nature and treatment of pathological anxiety: Essays in honor of Edna B. Foa. New York: Guilford Google Scholar

  • LeDoux, J. E. (2002). Synaptic self: how our brains become who we are . New York: Viking Google Scholar

  • Merikangas, K. R. , Avenevoli, S. , Dierker, L. , Grillon, C. (1999). Vulnerability factors among children at risk for anxiety disorders. Biological Psychiatry , 46, 1523– 1535 CrossrefGoogle Scholar

  • Melzig, C. , Weike, A. I. , Hamm, A. O. (2005). Anticipation of and reactivity to threatening stimuli and arousal symptom provocation in persons at high risk for developing panic disorder. Psychophysiology , 42, Suppl., 89 Google Scholar

  • Michalowski, J. , Melzig, C. , Schupp, H. T. , Hamm, A. O. (2005). Cortical processing of emotional pictures in spider phobic students. Psychophysiology , 42, Suppl., 89 Google Scholar

  • Morris, J. S. , Friston, K. J. , Büchel, C. , Frith, C. D. , Young, A. W. , Calder, A. J. , Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain , 121, 47– 57 CrossrefGoogle Scholar

  • Mühlberger, A. , Herrmann, M. , Wiedemann, G. , Ellgring, H. , Pauli, P. (2001). Repeated exposure of flight phobics to flights in virtual reality: fear reports, physiological fear reactions, and effects on fear of flying. Behaviour Research and Therapy , 39, 1033– 1050 CrossrefGoogle Scholar

  • Mühlberger, A. , Weik, A. , Pauli, P. , Wiedemann, G. (2006). One-session virtual reality exposure treatment for fear of flying: 1-year follow-up and graduation flight accompaniment effects. Psychotherapy Research , 16, 26– 40 CrossrefGoogle Scholar

  • Nakayama, K. , Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research , 29, 1631– 1647 CrossrefGoogle Scholar

  • Öhman, A. , Mineka, S. (2001). Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychological Review , 108, 483– 522 CrossrefGoogle Scholar

  • Pawlak, C. R. , Weyers, P. (2006). Tiermodelle für Angst und Angststörungen - Ausgewählte Modelle und Ansätze zur Untersuchung individueller Differenzen. Psychologische Rundschau , 57, 139– 153 LinkGoogle Scholar

  • Phelps, E. A. , O’Connor, K. J. , Gattenby, J. C. , Grillon, C. , Gore, J. C. , Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience , 4, 437– 441 CrossrefGoogle Scholar

  • Posner, M. I. , Dehaene, S. (1994). Attentional networks. Trends in Neuroscience , 17, 75– 79 CrossrefGoogle Scholar

  • Prigatano, G. P. , Johnson, H. J. (1974). Autonomic nervous system changes associated with a spider phobic reaction. Journal of Abnormal Psychology , 83, 169– 177 CrossrefGoogle Scholar

  • Reiss, S. , Peterson, R. A. , Gursky, D. M. , McNally, R. J. (1986). Anxiety sensitivity, anxiety frequency, and the prediction of fearfulness. Behaviour Research and Therapy , 24, 1– 8 CrossrefGoogle Scholar

  • Ressler, K. J. , Rothbaum, B. O. , Tannenbaum, L. , Anderson, P. , Graap, K. , Zimand, E. , Hodges, L. , Davis, M. (2004). Cognitive enhancers as adjuncts to Psychotherapy. Archives of General Psychiatry , 61, 1136– 1144 CrossrefGoogle Scholar

  • Rosen, J. B. , Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review , 105, 325– 350 CrossrefGoogle Scholar

  • Ruhmland, M. , Margraf, J. (2001). Effektivität psychologischer Therapien von spezifischer Phobie und Zwangsstörung: Meta-Analysen auf Störungsebene. Verhaltenstherapie , 11, 14– 26 CrossrefGoogle Scholar

  • Schafe, G. E. , LeDoux, J. E. (2003). The neural basis of fear. In M. S. Gazzaniga (Ed.), The cognitive neurosciences III (pp. 987-1003). Cambridge, MA: MIT Press Google Scholar

  • Schupp, H. T. , Junghöfer, M. , Weike, A. I. , Hamm, A. O. (2003). Emotional facilitation of sensory processing in the visual cortex. Psychological Science , 14, 7– 13 CrossrefGoogle Scholar

  • Schupp, H. T. , Öhman, A. , Junghöfer, M. , Weike, A. I. , Stockburger, J. , Hamm, A. O. (2004). The facilitated processsing of threatening faces: An ERP analysis. Emotion , 4, 189– 200 CrossrefGoogle Scholar

  • Seligman, M. E. P. (1971). Phobias and preparedness. Behavior Therapy , 2, 307– 321 CrossrefGoogle Scholar

  • Straube, T. , Miltner, W. H. R. (2006). Zentralnervöse Korrelate der Verarbeitung bedrohungsrelevanter Reize bei Phobikern und Gesunden. Psychologische Rundschau , 57, 176– 186 LinkGoogle Scholar

  • Timberlake, W. (1993). Behavior systems and reinforcement: an integrative approach. Journal of Experimental Analysis of Behavior , 60, 105– 128 CrossrefGoogle Scholar

  • Treisman, A. M. , Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology , 12, 97– 136 CrossrefGoogle Scholar

  • Walker, D. L. , Davis, M. (1997). Anxiogenic effects of high illumination levels assessed with the acoustic startle response in rats. Biological Psychiatry , 42, 461– 471 CrossrefGoogle Scholar

  • Walker, D. L. , Davis, M. (2002). The role of amygdala glutamate receptors in fear learning, fear potentiated startle, and extinction. Pharmacology, Biochemistry and Behavior , 71, 379– 392 CrossrefGoogle Scholar

  • Weike, A. I. , Hamm, A. O. , Schupp, H. T. , Runge, U. , Schröder, H. W. S. , Kessler, C. (2005). Fear conditioning following unilateral temporal lobectomy: Dissociation of conditioned startle potentiation and autonomic learning. Journal of Neuroscience , 25, 11117– 11124 CrossrefGoogle Scholar

  • Wendt, J. , Lotze, M. , Weike, A. I. , Zimmermann, C. , Hosten, N. , Hamm, A. O. (2005). Neural activations and response output patterns in spider phobia. Psychophysiology , 42, Suppl., 130 Google Scholar