Skip to main content
Article

Subject’s State Modulates Oscillatory Responses to Emotional Facial Expressions

Published Online:https://doi.org/10.1027/0269-8803/a000070

Subject’s state during the experiment and his or her perception of the experimental procedure are usually ignored, although they may potentially considerably change the pattern of results. In this study, the effect of subject’s state on cortical oscillatory responses to emotional facial expressions was investigated in a sample of 40 subjects aged 17–32 years. The strength of oscillatory responses in all frequency bands was lower in subjects who felt tenseness, experienced negative emotions, and did not like the experimental procedure. Moreover, in these subjects, personality-related differences in cortical oscillatory responses were not found, though they were found in subjects who reported being relaxed and liked the procedure. The observed individual differences in subject’s state partly depended on personality and partly on other factors that preexisted before the experiment. These data show that subject’s state is an important contributor to observed oscillatory dynamics and should be taken into account.

References

  • Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1, 21–61. First citation in articleCrossrefGoogle Scholar

  • Aftanas, L. I. , Koshkarov, V. I. , Pokrovskaja, V. L. , Lotova, N. V. , Mordvintsev, Y. N. (1996). Pre- and post-stimulus processes in affective task and event-related desynchronization: Do they discriminate anxiety coping styles? International Journal of Psychophysiology, 24, 197–212. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. , Lucchiari, C. (2006). EEG correlates (event-related desynchronization) of emotional face elaboration: A temporal analysis. Neuroscience Letters, 392, 118–123. First citation in articleCrossrefGoogle Scholar

  • Balconi, M. , Pozzoli, U. (2003). Face-selective processing and the effect of pleasant and unpleasant emotional expressions on ERP correlates. International Journal of Psychophysiology, 49, 67–74. First citation in articleCrossrefGoogle Scholar

  • Bartussek, D. (1984). Extraversion und EEG: Ein Forschungsparadigma in der Sackgasse? [Extraversion and EEG: A dead-end paradigm?] In M. Amelang, H. J. Ahrens (Eds.), Brennpunkte der Personlichkeitsforschung (pp. 157–189). Gottingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Basar, E. , Güntekin, B. , Öniz, A. (2006). Principles of oscillatory brain dynamics and a treatise of recognition of faces and facial expressions. Progress in Brain Research, 159, 43–62. First citation in articleCrossrefGoogle Scholar

  • Basile, L. F. , Brunetti, E. P. , Pereira, J. F. Jr. , Ballester, G. , Amaro, E. Jr. , Anghinah, R. , … Gattaz, W. F. (2006). Complex slow potential generators in a simplified attention paradigm. International Journal of Psychophysiology, 61, 149–157. First citation in articleCrossrefGoogle Scholar

  • Buss, A. H. (1992). The aggression questionnaire. Journal of Personality and Social Psychology, 63, 452–459. First citation in articleCrossrefGoogle Scholar

  • Delorme, A. , Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. First citation in articleCrossrefGoogle Scholar

  • Dimberg, U. , Thunberg, M. (2007). Speech anxiety and rapid emotional reactions to angry and happy facial expressions. Scandinavian Journal of Psychology, 48, 321–328. First citation in articleCrossrefGoogle Scholar

  • Ekman, P. , Friesen, W. V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologist Press. First citation in articleGoogle Scholar

  • Fink, A. (2005). Event-related desynchronization in the EEG during emotional and cognitive information processing: Differential effects of extraversion. Biological Psychology, 70, 152–160. First citation in articleCrossrefGoogle Scholar

  • Gale, A. (1983). Electroencephalographic studies of extraversion-introversion: A case study in the psychophysiology of individual differences. Personality and Individual Differences, 4, 371–380. First citation in articleCrossrefGoogle Scholar

  • Güntekin, B. , Basar, E. (2007). Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology, 64, 91–100. First citation in articleCrossrefGoogle Scholar

  • Hall, C. W. (2006). Self-reported aggression and the perception of anger in facial expression photos. Journal of Psychology: Interdisciplinary and Applied, 140, 255–267. First citation in articleCrossrefGoogle Scholar

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70. First citation in articleGoogle Scholar

  • Jensen, O. , Kaiser, J. , Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324. First citation in articleCrossrefGoogle Scholar

  • Kesler-West, M. L. , Andersen, A. H. , Smith, C. D. , Avison, M. J. , Davis, C. E. , Kryscio, R. J. , Blonder, L. X. (2001). Neural substrates of facial emotion processing using fMRI. Cognitive Brain Research, 11, 213–226. First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195. First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. , Sauseng, P. , Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63–88. First citation in articleGoogle Scholar

  • Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews, 31, 377–395. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Bocharov, A. V. , Levin, E. A. , Savostyanov, A. N. , Slobodskoj-Plusnin, J. Y. (2008). Anxiety and oscillatory responses to emotional facial expressions. Brain Research, 1227, 174–188. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Bocharov, A. V. , Slobodskaya, H. R. , Ryabichenko, T. I. (2008). Personality-linked biases in perception of emotional facial expressions. Personality and Individual Differences, 44, 1093–1104. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Bocharov, A. V. , Slobodskoj-Plusnin, J. Y. (2009). Hostility- and gender-related differences in oscillatory responses to emotional facial expressions. Aggressive Behavior, 35, 502–513. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Savostyanov, A. N. , Levin, E. A. (2004). Alpha oscillations as a correlate of trait anxiety. International Journal of Psychophysiology, 53, 147–160. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Savostyanov, A. N. , Levin, E. A. (2005). Uncertainty, anxiety and brain oscillations. Neuroscience Letters, 387, 121–125. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Savostyanov, A. N. , Levin, E. A. (2006). Alpha synchronization and anxiety: Implications for inhibition vs. alertness hypotheses. International Journal of Psychophysiology, 59, 151–158. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Slobodskoj-Plusnin, J. Y. , Bocharov, A. V. (2009). Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience, 164, 1588–1600. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G. , Slobodskoi-Plyusnin, Y. Y. , Bocharov, A. V. (2010). Gender differences in implicit and explicit processing of emotional facial expressions as revealed by event-related theta synchronization. Emotion, 10, 678–687. First citation in articleCrossrefGoogle Scholar

  • Larkin, K. T. , Martin, R. R. , McClain, S. E. (2002). Cynical hostility and the accuracy of decoding facial expressions of emotions. Journal of Behavioral Medicine, 25, 285–292. First citation in articleCrossrefGoogle Scholar

  • Makeig, S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and Clinical Neurophysiology, 86, 283–293. First citation in articleCrossrefGoogle Scholar

  • Matthews, G. , Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: A comparative review. Personality and Individual Differences, 26, 583–626. First citation in articleCrossrefGoogle Scholar

  • O’Gorman, J. G. (1984). Extraversion and the EEG. I: An evaluation of Gale’s hypothesis. Biological Psychology, 19, 95–112. First citation in articleGoogle Scholar

  • Rubino, V. , Blasi, G. , Latorre, V. , Fazio, L. , d’Errico, I. , Mazzola, V. , … Bertolino, A. (2007). Activity in medial prefrontal cortex during cognitive evaluation of threatening stimuli as a function of personality style. Brain Research Bulletin, 74, 250–257. First citation in articleCrossrefGoogle Scholar

  • Spielberger, C. D. , Gorsuch, R. L. , Lushene, R. E. (1970). Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press. First citation in articleGoogle Scholar

  • van Honk, J. , Tuiten, A. , de Haan, E. (2001). Attentional biases for angry faces: Relationships to trait anger and anxiety. Cognition and Emotion, 15, 279–297. First citation in articleCrossrefGoogle Scholar

  • Winston, J. S. , O’Doherty, J. , Dolan, R. J. (2003). Common and distinct neural responses during direct and incidental processing of multiple facial emotions. NeuroImage, 20, 84–97. First citation in articleCrossrefGoogle Scholar

  • Woldorff, M. G. , Hillyard, S. A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and Clinical Neurophysiology, 79, 170–191. First citation in articleCrossrefGoogle Scholar

  • Worsley, K. J. , Marrett, S. , Neelin, P. , Vandal, A. C. , Friston, K. J. , Evans, A. C. (1996). A unified statistical approach or determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73. First citation in articleCrossrefGoogle Scholar