Skip to main content

Emotional Reactivity to Visual Content as Revealed by ERP Component Clustering

Published Online:https://doi.org/10.1027/0269-8803/a000145

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.

References

  • Beauregard, M., Levesque, J. & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience, 21, RC165. First citation in articleGoogle Scholar

  • Belova, M. A., Paton, J. J., Morrison, S. E. & Salzman, C. D. (2007). Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron, 55, 970–984. First citation in articleCrossrefGoogle Scholar

  • Binder, M., Barry, R. J. & Kaiser, J. (2005). Sensitivity of primary phasic heart rate deceleration to stimulus repetition in an habituation procedure: Influence of a subjective measure of activation/arousal on the evoked cardiac response. International Journal of Psychophysiology, 55, 61–72. doi: 10.1016/j.ijpsycho.2004.06.003 First citation in articleCrossrefGoogle Scholar

  • Blonder, L. X., Bowers, D. & Heilman, K. M. (1991). The role of the right hemisphere in emotional communication. Brain, 114, 1115. First citation in articleCrossrefGoogle Scholar

  • Borod, J. C., Cicero, B. A., Obler, L. K., Welkowitz, J., Erhan, H. M., Santschi, C., … Whalen, J. R. (1998). Right hemisphere emotional perception: Evidence across multiple channels. Neuropsychology-New York, 12, 446–458. First citation in articleCrossrefGoogle Scholar

  • Corbetta, M., Patel, G. & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58, 306–324. doi: 10.1016/j.neuron.2008.04.017 First citation in articleCrossrefGoogle Scholar

  • Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology, 67, 219–234. First citation in articleCrossrefGoogle Scholar

  • Decety, J. & Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. The Neuroscientist, 13, 580–593. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200–227. First citation in articleCrossrefGoogle Scholar

  • Delorme, A., Palmer, J., Onton, J., Oostenveld, R. & Makeig, S. (2012). Independent EEG sources are dipolar. PLoS One, 7, e30135. doi: 10.1371/journal.pone.0030135 First citation in articleCrossrefGoogle Scholar

  • De Munck, J. C., van Dijk, B. W. & Spekreijse, H. (1988). Mathematical dipoles are adequate to describe realistic generators of human brain activity. IEEE Transactions on Bio-Medical Engineering, 35, 960–966. doi: 10.1109/10.8677 First citation in articleCrossrefGoogle Scholar

  • Dijk, H. van, Schoffelen, J.-M., Oostenveld, R. & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. The Journal of Neuroscience, 28, 1816–1823. doi: 10.1523/JNEUROSCI.1853-07.2008 First citation in articleCrossrefGoogle Scholar

  • Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S. & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15, 95–111. First citation in articleCrossrefGoogle Scholar

  • Engels, A. S., Heller, W., Mohanty, A., Herrington, J. D., Banich, M. T., Webb, A. G. & Miller, G. A. (2007). Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology, 44, 352–363. First citation in articleCrossrefGoogle Scholar

  • Foti, D., Hajcak, G. & Dien, J. (2009). Differentiating neural responses to emotional pictures: Evidence from temporal-spatial PCA. Psychophysiology, 46, 521–530. First citation in articleCrossrefGoogle Scholar

  • Gaillard, R., Dehaene, S., Adam, C., Clémenceau, S., Hasboun, D., Baulac, M., … Naccache, L. (2009). Converging intracranial markers of conscious access. PLoS Biology, 7, e1000061. doi: 10.1371/journal.pbio.1000061 First citation in articleCrossrefGoogle Scholar

  • Garrett, A. S. & Maddock, R. J. (2006). Separating subjective emotion from the perception of emotion-inducing stimuli: An fMRI study. NeuroImage, 33, 263–274. doi: 10.1016/j.neuroimage.2006.05.024 First citation in articleCrossrefGoogle Scholar

  • Grabenhorst, F., Rolls, E. T. & Bilderbeck, A. (2008). How cognition modulates affective responses to taste and flavor: Top-down influences on the orbitofrontal and pregenual cingulate cortices. Cerebral Cortex, 18, 1549–1559. First citation in articleCrossrefGoogle Scholar

  • Grimm, S., Schmidt, C. F., Bermpohl, F., Heinzel, A., Dahlem, Y., Wyss, M., … Northoff, G. (2006). Segregated neural representation of distinct emotion dimensions in the prefrontal cortex – an fMRI study. NeuroImage, 30, 325–340. doi: 10.1016/j.neuroimage.2005.09.006 First citation in articleCrossrefGoogle Scholar

  • Grzybowski, S., Wyczesany, M. & Kaiser, J. (2014). The influence of context on the processing of emotional and neutral adjectives – an ERP study. Biological Psychology, 99, 137–149. First citation in articleCrossrefGoogle Scholar

  • Gyurak, A., Gross, J. J. & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25, 400–412. doi: 10.1080/02699931.2010.544160 First citation in articleCrossrefGoogle Scholar

  • Hamann, S. & Canli, T. (2004). Individual differences in emotion processing. Current Opinion in Neurobiology, 14, 233–238. First citation in articleCrossrefGoogle Scholar

  • Heller, W. (1993). Neuropsychological mechanisms of individual differences in emotion, personality, and arousal. Neuoropsychology New York, 7, 476–489. First citation in articleGoogle Scholar

  • Heller, W. & Nitschke, J. B. (1998). The puzzle of regional brain activity in depression and anxiety: The importance of subtypes and comorbidity. Neuropsychological Perspectives on Affective and Anxiety Disorders: A Special Issue of the Journal Cognition and Emotion, 12, 421–447. First citation in articleGoogle Scholar

  • Hillyard, S. A., Vogel, E. K. & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 1257–1270. doi: 10.1098/rstb.1998.0281 First citation in articleCrossrefGoogle Scholar

  • Hosseini, S. M., Talepasand, S. & Bigdeli, I. (2009). Brain activity and affect: Overall and asymmetric activity of the brain lobes in affective states. Journal of Research in Medical Sciences, 14, 309–311. First citation in articleGoogle Scholar

  • Jones, N. A. & Fox, N. A. (1992). Electroencephalogram asymmetry during emotionally evocative films and its relation to positive and negative affectivity. Brain and Cognition, 20, 280–299. First citation in articleCrossrefGoogle Scholar

  • Jung, K. Y., Seo, D. W., Na, D. L., Chung, C. S., Lee, I. K., Oh, K., … Jung, H. K. (2007). Source localization of periodic sharp wave complexes using independent component analysis in sporadic Creutzfeldt-Jakob disease. Brain Research, 1143, 228–237. First citation in articleCrossrefGoogle Scholar

  • Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V. & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163–178. First citation in articleCrossrefGoogle Scholar

  • Kabbaj, M. (2004). Neurobiological bases of individual differences in emotional and stress responsiveness: High responders-low responders model. Archives of Neurology, 61, 1009–1012. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G., Slobodskoj-Plusnin, J. Y. & Bocharov, A. V. (2009). Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience, 164, 1588–1600. First citation in articleCrossrefGoogle Scholar

  • Knyazev, G. G., Slobodskoj-Plusnin, J. Y. & Bocharov, A. V. (2012). Subject’s state modulates oscillatory responses to emotional facial expressions. Journal of Psychophysiology, 26, 83–91. doi: 10.1027/0269-8803/a000070 First citation in articleLinkGoogle Scholar

  • Kossowska, M., Czarnek, G., Wronka, E., Wyczesany, M. & Bukowski, M. (2014). Individual differences in epistemic motivation and brain conflict monitoring activity. Neuroscience Letters, 570, 38–41. doi: 10.1016/j.neulet.2014.04.002 First citation in articleCrossrefGoogle Scholar

  • Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691–702. doi: 10.1038/nrn1747 First citation in articleCrossrefGoogle Scholar

  • Laarne, P. H., Tenhunen-Eskelinen, M. L., Hyttinen, J. K. & Eskola, H. J. (2000). Effect of EEG electrode density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topography, 12, 249–254. doi: 10.1023/A:1023422504025 First citation in articleCrossrefGoogle Scholar

  • Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (1999). International affective picture system (IAPS): Instruction manual and affective ratings. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida. First citation in articleGoogle Scholar

  • Lau, T. M., Gwin, J. T. & Ferris, D. P. (2012). How many electrodes are really needed for EEG-based mobile brain imaging? Journal of Behavioral and Brain Science, 2, 387–393. First citation in articleCrossrefGoogle Scholar

  • Lelic, D., Gratkowski, M., Valeriani, M., Arendt-Nielsen, L. & Drewes, A. M. (2009). Inverse modeling on decomposed electroencephalographic data: A way forward? Journal of Clinical Neurophysiology, 26, 227–235. doi: 10.1097/WNP.0b013e3181aed1a1 First citation in articleCrossrefGoogle Scholar

  • Lithari, C., Frantzidis, C. A., Papadelis, C., Vivas, A. B., Klados, M. A., Kourtidou-Papadeli, C., … Bamidis, P. D. (2010). Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions. Brain Topography, 23, 27–40. First citation in articleCrossrefGoogle Scholar

  • Lyrakos, D. G. (2012). The impact of stress, social support, self-efficacy and coping on university students, a multicultural european study. Psychology, 3, 143–149. First citation in articleCrossrefGoogle Scholar

  • Makeig, S., Bell, A. J., Jung, T. P. & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. In D. TouretzkyM. MozerM. HasselmoEds., Advances in Neural Information Processing Systems (pp. 145–151). Boston, MA: MIT Press. First citation in articleGoogle Scholar

  • Mathersul, D., Williams, L. M., Hopkinson, P. J. & Kemp, A. H. (2008). Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion, 8, 560–572. First citation in articleCrossrefGoogle Scholar

  • Matthews, G., Jones, D. M. & Chamberlain, A. G. (1990). Refining the measurement of mood: The UWIST Mood Adjective Checklist. British Journal of Psychology, 81, 17–42. First citation in articleCrossrefGoogle Scholar

  • McCabe, C., Rolls, E. T., Bilderbeck, A. & McGlone, F. (2008). Cognitive influences on the affective representation of touch and the sight of touch in the human brain. Social Cognitive and Affective Neuroscience, 3, 97–108. doi: 10.1093/scan/nsn005 First citation in articleCrossrefGoogle Scholar

  • McIntosh, A. R. & Korostil, M. (2008). Interpretation of neuroimaging data based on network concepts. Brain Imaging and Behavior, 2, 264–269. doi: 10.1007/s11682-008-9031-6 First citation in articleCrossrefGoogle Scholar

  • Mesulam, M. M. (1985). Patterns in behavioral neuroanatomy. In M. M. MesulamEd., Principles of Behavioral Neurology (pp. 1–70). Cambridge, MA: FA Davis. First citation in articleGoogle Scholar

  • Michalowski, J. M., Melzig, C. A., Weike, A. I., Stockburger, J., Schupp, H. T. & Hamm, A. O. (2009). Brain dynamics in spider-phobic individuals exposed to phobia-relevant and other emotional stimuli. Emotion, 9, 306. First citation in articleCrossrefGoogle Scholar

  • Ng, J., Chan, H. Y. & Schlaghecken, F. (2012). Dissociating effects of subclinical anxiety and depression on cognitive control. Advances in Cognitive Psychology, 8, 38–49. First citation in articleCrossrefGoogle Scholar

  • Ochsner, K. N. & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242–249. First citation in articleCrossrefGoogle Scholar

  • Ochsner, K. N., Silvers, J. A. & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24. doi: 10.1111/j.1749-6632.2012.06751.x First citation in articleCrossrefGoogle Scholar

  • Okon-Singer, H., Lichtenstein-Vidne, L. & Cohen, N. (2013). Dynamic modulation of emotional processing. Biological Psychology, 92, 480–491. doi: 10.1016/j.biopsycho.2012.05.010 First citation in articleCrossrefGoogle Scholar

  • Onton, J. & Makeig, S. (2006). Information-based modeling of event-related brain dynamics. Progress in Brain Research, 159, 99–120. First citation in articleCrossrefGoogle Scholar

  • Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1. First citation in articleCrossrefGoogle Scholar

  • O’Toole, L. & Dennis, T. A. (2012). Attention training and the threat bias: An ERP study. Brain and Cognition, 78, 63–73. doi: 10.1016/j.bandc.2011.10.007 First citation in articleCrossrefGoogle Scholar

  • Phillips, M., Ladouceur, C. & Drevets, W. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13, 829–857. doi: 10.1038/mp.2008.65 First citation in articleCrossrefGoogle Scholar

  • Posner, M. I. & Gilbert, C. D. (1999). Attention and primary visual cortex. Proceedings of the National Academy of Sciences, 96, 2585–2587. doi: 10.1073/pnas.96.6.2585 First citation in articleCrossrefGoogle Scholar

  • Prohovnik, I., Skudlarski, P., Fulbright, R. K., Gore, J. C. & Wexler, B. E. (2004). Functional MRI changes before and after onset of reported emotions. Psychiatry Research: Neuroimaging, 132, 239–250. First citation in articleCrossrefGoogle Scholar

  • Rolls, E. T. & Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 86, 216–244. First citation in articleCrossrefGoogle Scholar

  • Romei, V., Rihs, T., Brodbeck, V. & Thut, G. (2008). Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. NeuroReport, 19, 203–208. doi: 10.1097/WNR.0b013e3282f454c4 First citation in articleCrossrefGoogle Scholar

  • Salzman, C. D. & Fusi, S. (2010). Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex. Annual Review of Neuroscience, 33, 173–202. doi: 10.1146/annurev.neuro.051508.135256 First citation in articleCrossrefGoogle Scholar

  • Schupp, H. T., Markus, J., Weike, A. I. & Hamm, A. O. (2003). Emotional facilitation of sensory processing in the visual cortex. Psychological Science, 14, 7–13. doi: 10.1111/1467-9280.01411 First citation in articleCrossrefGoogle Scholar

  • Shulman, G. L., Astafiev, S. V., McAvoy, M. P., d’ Avossa, G. & Corbetta, M. (2007). Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cerebral Cortex, 17, 2625–2633. doi: 10.1093/cercor/bhl170 First citation in articleCrossrefGoogle Scholar

  • Silvers, J. A., Wager, T. D., Weber, J. & Ochsner, K. N. (2014). The neural bases of uninstructed negative emotion modulation. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsu016 First citation in articleCrossrefGoogle Scholar

  • Vigário, R., Sarela, J., Jousmiki, V., Hamalainen, M. & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. Biomedical Engineering, IEEE Transactions on, 47, 589–593. First citation in articleCrossrefGoogle Scholar

  • Viviani, R. (2013). Emotion regulation, attention to emotion, and the ventral attentional network. Frontiers in Human Neuroscience, 7, 746. doi: 10.3389/fnhum.2013.00746 First citation in articleCrossrefGoogle Scholar

  • Vogel, E. K. & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190–203. First citation in articleCrossrefGoogle Scholar

  • Vuilleumier, P. & Driver, J. (2007). Modulation of visual processing by attention and emotion: Windows on causal interactions between human brain regions. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 837–855. First citation in articleCrossrefGoogle Scholar

  • Walentowska, W. & Wronka, E. (2012). Trait anxiety and involuntary processing of facial emotions. International Journal of Psychophysiology, 85, 27–36. doi: 10.1016/j.ijpsycho.2011.12.004 First citation in articleCrossrefGoogle Scholar

  • Wang, Y., Wu, J., Fu, S. & Luo, Y. (2010). Orienting and focusing in voluntary and involuntary visuospatial attention conditions. Journal of Psychophysiology, 24, 198–209. doi: 10.1027/0269-8803/a000010 First citation in articleLinkGoogle Scholar

  • Wendt, J., Weike, A. I., Lotze, M. & Hamm, A. O. (2011). The functional connectivity between amygdala and extrastriate visual cortex activity during emotional picture processing depends on stimulus novelty. Biological Psychology, 86, 203–209. First citation in articleCrossrefGoogle Scholar

  • Weymar, M., Keil, A. & Hamm, A. O. (2013). Timing the fearful brain: Unspecific hypervigilance and spatial attention in early visual perception. Social Cognitive and Affective Neuroscience, 9, 723–729. doi: 10.1093/scan/nst044 First citation in articleCrossrefGoogle Scholar

  • Whittingstall, K., Stroink, G., Gates, L., Connolly, J. F. & Finley, A. (2003). Effects of dipole position, orientation and noise on the accuracy of EEG source localization. BioMedical Engineering OnLine, 2, 14. doi: 10.1186/1475-925X-2-14 First citation in articleCrossrefGoogle Scholar

  • Wronka, E. & Walentowska, W. (2014). Attentional Modulation of the Emotional Expression Processing Studied with ERPs and sLORETA. Journal of Psychophysiology, 28, 32–46. doi: 10.1027/0269-8803/a000109 First citation in articleLinkGoogle Scholar

  • Wyczesany, M., Ferdek, M. & Grzybowski, S. (2014). Cortical functional connectivity is associated with the valence of affective states. Brain and Cognition, 90, 109–115. doi: 10.1016/j.bandc.2014.06.001 First citation in articleCrossrefGoogle Scholar

  • Wyczesany, M., Grzybowski, S., Barry, R., Kaiser, J., Coenen, A. & Potoczek, A. (2011). Covariation of EEG Synchronization and Emotional State as Modified by Anxiolytics. Journal of Clinical Neurophysiology, 28, 289–296. doi: 10.1097/WNP.0b013e31821c34f7 First citation in articleCrossrefGoogle Scholar

  • Wyczesany, M., Kaiser, J. & Barry, R. (2009). Cortical lateralization patterns related to self-estimation of emotional state. Acta Neurobiologiae Experimentalis, 69, 526–536. First citation in articleGoogle Scholar

  • Wyczesany, M., Ligeza, T. & Grzybowski, S. (2014). Effective connectivity during visual processing is affected by emotional state. Brain Imaging and Behavior. doi: 10.1007/s11682-014-9326-8 First citation in articleCrossrefGoogle Scholar

  • Wyczesany, M. & Ligeza, T. S. (2015). Towards a constructionist approach to emotions: Verification of the three-dimensional model of affect with EEG-independent component analysis. Experimental Brain Research, 233, 723–733. doi: 10.1007/s00221-014-4149-9 First citation in articleCrossrefGoogle Scholar

  • Zani, A. & Proverbio, A. M. (2012). Is that a belt or a snake? object attentional selection affects the early stages of visual sensory processing. Behavioral and Brain Functions, 8, 6. First citation in articleCrossrefGoogle Scholar