Skip to main content
Original Article

Speeded Paper-Pencil Sustained Attention and Mental Speed Tests

Can Performances Be Discriminated?

Published Online:https://doi.org/10.1027/1614-0001.29.4.205

Mental speed (MS) and sustained attention (SA) are theoretically distinct constructs. However, tests of MS are very similar to SA tests that use time pressure as an impeding condition. The performance in such tasks largely relies on the participants’ speed of task processing (i.e., how quickly and correctly one can perform the simple cognitive tasks). The present study examined whether SA and MS are empirically the same or different constructs. To this end, 24 paper-pencil and computerized tests were administered to 199 students. SA turned out to be highly related to MS task classes: substitution and perceptual speed. Furthermore, SA showed a very close relationship with the paper-pencil MS factor. The correlation between SA and computerized speed was considerably lower but still high. In a higher-order general speed factor model, SA had the highest loading on the higher-order factor; the higher-order factor explained 88% of SA variance. It is argued that SA (as operationalized with tests using time pressure as an impeding condition) and MS cannot be differentiated, at the level of broad constructs. Implications for neuropsychological assessment and future research are discussed.

References

  • Ackerman, P.L., Beier, M.E. , Boyle, M.O. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131, 567–589. First citation in articleCrossrefGoogle Scholar

  • Arbuckle, J.L. (2005). Amos 6.0 [Computer software]. Spring House: Amos Development Corp. First citation in articleGoogle Scholar

  • Beauducel, A. , Wittmann, W.W. (2005). Simulation study on fit indexes in CFA based on data with slightly distorted simple structure. Structural Equation Modeling, 12, 41–75. First citation in articleCrossrefGoogle Scholar

  • Bollen, K.A. , Stine, R.A. (1993). Bootstrapping goodness-of-fit measures in structural equation modeling. In J.S. Long, (Ed.), Testing structural equation models (pp. 111–135). Newbury Park, CA: Sage. First citation in articleGoogle Scholar

  • Brähler, E.Holling, H. Leutner, D. Petermann, F. Eds.. (2002). Brickenkamp Handbuch psychologischer und pädagogischer Tests (3., vollständig überarbeitete und erweiterte Auflage) [Brickenkamp handbook of psychological and educational tests (3rd ed.)]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Brickenkamp, R. (2002). The d2 test – A timed test of selective attention. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Buehner, M. (2006). Einführung in die Test- und Fragebogenkonstruktion [Introduction to test and questionnaire development]. München: Pearson Studium. First citation in articleGoogle Scholar

  • Buehner, M., Krumm, S. , Ziegler, M. , & Pluecken, T. (2006). Cognitive abilities and their interplay: Reasoning, crystallized intelligence, working memory components, and sustained attention. Journal of Individual Differences, 27, 57–72. First citation in articleLinkGoogle Scholar

  • Carroll, J.B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Danthiir, V., Roberts, R.D. , Schulze, R. , & Wilhelm, O. (2005). Mental speed: On frameworks, paradigms, and a platform for the future. In R.W. Engle, (Ed.), Handbook of understanding and measuring intelligence (pp. 27–46). Thousand Oaks, CA: Sage. First citation in articleCrossrefGoogle Scholar

  • Danthiir, V., Wilhelm, O. , Roberts, R.D. (2007). More evidence for a higher-order model of mental speed: Factor structure and validity of computerized measures. In preparation. First citation in articleGoogle Scholar

  • Danthiir, V., Wilhelm, O. , Schulze, R. , & Roberts, R.D. (2005). Factor structure and validity of paper-and-pencil measures of mental speed: Evidence for a higher-order model? Intelligence, 33, 491–514. First citation in articleCrossrefGoogle Scholar

  • Dudgeon, P. (2003). NIESEM: A computer program for calculating noncentral interval estimates (and power analysis) for structural equation modeling. Retrieved September 10, 2005, from. rubens.its.unimelb.edu.au/~dudgeon. First citation in articleGoogle Scholar

  • Hoffmann, J. (1993). Konzentration durch Antizipation [Concentration through anticipation]. In E. Hahn, (Ed.), Aufmerksamkeit und Energetisierung (pp. 35–66). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Horn, J.L. , & Noll, J. (1994). System for understanding cognitive capabilities: A theory and the evidence on which it is based. In D.K. Detterman, (Ed.), Current topics in human intelligence, Vol. 4: Theories of intelligence (pp. 151–203). Norwood, NJ: Ablex. First citation in articleGoogle Scholar

  • Hu, L.T. , & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. First citation in articleCrossrefGoogle Scholar

  • Jaeger, A.O., Suess, H.M. , Beauducel, A. (1997). Berliner Intelligenzstruktur-Test (BIS) [Berlin Intelligence Structure Test]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Jensen, A.R. (1982). Reaction time and psychometric g. In H.J. Eysenck, (Ed.), A model for intelligence (pp. 93–132). New York: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Jensen, A.R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger. First citation in articleGoogle Scholar

  • Krumm, S. , Schmidt-Atzert, L., Buehner, M. , Ziegler, M. , Michalczyk, K. , Arrow, K. (2008). Examining several predictors of reasoning: All you need is coordination and short-term storage. Manuscript submitted. First citation in articleGoogle Scholar

  • Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Little, T.D., Cunningham, W.A. , Shahar, G. , & Widaman, K.F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151–173. First citation in articleCrossrefGoogle Scholar

  • MacCallum, R.C., Browne, M.W. , Sugawara, H.M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149. First citation in articleCrossrefGoogle Scholar

  • Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530. First citation in articleCrossrefGoogle Scholar

  • Marschner, G. (1980). Revisions-Test [Revision test]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Marsh, H.W., Hau, K.T. , Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11, 320–341. First citation in articleGoogle Scholar

  • McGrew, K.S. (2005). The Cattell-Horn-Carroll Theory of cognitive abilities. In P.L. Harrison, (Ed.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 136–181). New York: Guilford. First citation in articleGoogle Scholar

  • Mirsky, A.F., Anthony, B.J. , Duncan, C.C. , Ahearn, M.B. , Kellam, S.G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2, 109–145. First citation in articleCrossrefGoogle Scholar

  • Moosbrugger, H. , Goldhammer, F. (2005). Frankfurt Adaptive Concentration Test (FAKT-II). Bern: Huber. First citation in articleGoogle Scholar

  • Moosbrugger, H. , Oehlschlägel, J. (1996). FAIR Frankfurter Aufmerksamkeits-Inventar [Frankfurt Attention Inventory]. Bern: Huber. First citation in articleGoogle Scholar

  • Oberauer, K., Suess, H.M. , Wilhelm, O. , & Wittmann, W.W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167–193. First citation in articleCrossrefGoogle Scholar

  • Oswald, W.D. , Roth, E. (1997). Der Zahlen-Verbindungs-Test (ZVT) (2. Auflage) [Number Combination Test]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Roberts, R.D. , Stankov, L. (1999). Individual differences in speed of mental processing and human cognitive abilities: Toward a taxonomic model. Learning and Individual Differences, 11, 1–120. First citation in articleCrossrefGoogle Scholar

  • Schermelleh-Engel, K. , Moosbrugger, H. , Mueller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 8, 23–74. First citation in articleGoogle Scholar

  • Schmidt, M., Trueblood, W., Merwin, M. , Durham, R.L. (1994). How much do “attention” tests tell us? Archives of Clinical Neuropsychology, 9, 383–394. First citation in articleCrossrefGoogle Scholar

  • Schmidt-Atzert, L. , Buehner, M. (1997). Komponenten von Konzentrationstestleistungen: Eine Untersuchung mit systematisch variierten Durchstreichtest-Varianten. Diagnostica, 43, 314–326. First citation in articleGoogle Scholar

  • Schmidt-Atzert, L. , Buehner, M. (2000). Aufmerksamkeit und Intelligenz [Attention and intelligence]. In K. Schweizer, (Ed.), Intelligenz und Kognition: Die kognitiv biologische Perspektive der Intelligenz [Intelligence and cognition: The cognitive biological perspective of intelligence] (pp. 125–151). Landau: Verlag Empirische Pädagogik. First citation in articleGoogle Scholar

  • Schmidt-Atzert, L., Buehner, M. , Enders, P. (2006). Messen Konzentrationstests Konzentration? Eine Analyse von Konzentrationstestleistungen [Do concentration tests assess concentration? Analysis of concentration test performance]. Diagnostica, 52, 33–44. First citation in articleLinkGoogle Scholar

  • Schmidt-Atzert, L., Buettner, G. , Buehner, M. (2004). Theoretische Aspekte von Aufmerksamkeits-/Konzentrationsdiagnostik [Theoretical aspects of the diagnosis of attention and concentration]. In L. Schmidt-Atzert, (Ed.), Diagnostik von Aufmerksamkeit und Konzentration [Diagnosis of concentration and attention] (pp. 3–22). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schmidt-Atzert, L., Krumm, S. , Buehner, M. (in press). Aufmerksamkeitsdiagnostik: Ableitung eines Strukturmodells und systematische Einordnung von Tests [Assessment of attention. Deviation of a structural model and systemic classification of tests]. Zeitschrift für Neuropsychologie. First citation in articleGoogle Scholar

  • Schweizer, K. (1994). Structural diversity of the speed-ability relationship due to information-processing skills. Personality and Individual Differences, 17, 607–616. First citation in articleCrossrefGoogle Scholar

  • Schweizer, K. (2005). An overview of research into the cognitive basis of intelligence. Journal of Individual Differences, 26, 43–51. First citation in articleLinkGoogle Scholar

  • Schweizer, K. , Moosbrugger, H. (1999). Aufmerksamkeit, Intelligenz und Verarbeitungsgeschwindigkeit als Komponenten der mentalen Leistungsfähigkeit [Attention, intelligence, and cognitive processing speed as components of mental ability]. Zeitschrift für Differentielle und Diagnostische Psychologie, 20, 126–132. First citation in articleLinkGoogle Scholar

  • Schweizer, K., Moosbrugger, H. , Goldhammer, F. (2005). The structure of the relationship between attention and intelligence. Intelligence, 33, 589–611. First citation in articleCrossrefGoogle Scholar

  • Spreen, O. , & Strauss, E. (1991). A compendium of neuropsychological tests. Administration, norms, and commentary. New York: Oxford University Press. First citation in articleGoogle Scholar

  • SPSS. (2003). SPSS 12.0 [Computer software]. Chicago: SPSS Inc. First citation in articleGoogle Scholar

  • Stankov, L. (1983). Attention and intelligence. Journal of Educational Psychology, 75, 471–490. First citation in articleCrossrefGoogle Scholar

  • Stankov, L. (1988). Aging, attention, and intelligence. Psychology and Aging, 3, 59–74. First citation in articleCrossrefGoogle Scholar

  • Strauss, M.E., Thompson, P., Adams, N.L. , Redline, S. , & Burant, C. (2000). Evaluation of a model of attention with confirmatory factor analysis. Neuropsychology, 14, 201–208. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. (2005). Aufmerksamkeitsstörungen [Attention disorders]. Göttingen: Hogrefe. First citation in articleCrossrefGoogle Scholar

  • Vernon, P.A. (1985). Individual differences in general cognitive ability. In L.C. Hartlage C.F. Telzrow, Eds., The neuropsychology of individual differences: A developmental perspective (pp. 125–150). New York: Plenum. First citation in articleCrossrefGoogle Scholar

  • Westhoff, K. (1995). Aufmerksamkeit und Konzentration [Attention and concentration]. In M. Amelang, (Ed.), Enzyklopädie der Psychologie: Bd. C VIII 2, Verhaltens- und Leistungsunterschiede [Encyclopedia of psychology. Behavioral and performance differences] (pp. 375–402). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Zimmermann, P., Fimm, B. (1993). Testbatterie zur Aufmerksamkeitsprüfung (TAP) [Test Battery for Attentional Performance]. Würselen: Vera Fimm Psychologische Testsysteme. First citation in articleGoogle Scholar