Skip to main content
Research Article

Balancing Between Goal-Directed and Habitual Responding Following Acute Stress

Published Online:https://doi.org/10.1027/1618-3169/a000485

Abstract. Instrumental learning is regulated by two memory systems: a relatively rigid but efficient habit system and a flexible but resource-demanding goal-directed system. Previous work has demonstrated that exposure to acute stress may shift the balance between these systems toward the habitual system. In the current study, we used a 2-day outcome devaluation paradigm with a 75% reward contingency rate and altered food reward categories to replicate and extend our previous findings. Participants learned neutral stimulus–response–reward associations on the first day. On the second day, rewards were devalued by eating to satiety. Subsequently, acute stress was induced in half of the participants using the Maastricht Acute Stress Test, while the other half engaged in a nonstressful control task. Finally, relative goal-directed versus habitual behavior was evaluated in a slips-of-action phase, where more slips-of-action indicate a shift toward the habitual system. Results showed that participants successfully acquired the stimulus–response–reward associations, that devaluation was effective, and that stressed participants displayed significant increases in cortisol and blood pressure. Stress led participants to commit more slips-of-action compared with nonstressed controls. The current study extends previous work, showing that the employed paradigm and outcome devaluation procedure are boundary conditions to the stress-induced shift in instrumental responding.

References

  • Alvares, G. A., Balleine, B. W., & Guastella, A. J. (2014). Impairments in goal-directed actions predict treatment response to cognitive-behavioral therapy in social anxiety disorder. PLoS ONE, 9, e94778. 10.1371/journal.pone.0094778 First citation in articleCrossref MedlineGoogle Scholar

  • Balodis, I. M., Grilo, C. M., & Potenza, M. N. (2015). Neurobiological features of binge eating disorder. CNS Spectrums, 20, 557–565. 10.1017/S1092852915000814 First citation in articleCrossref MedlineGoogle Scholar

  • Berner, L. A., Winter, S. R., Matheson, B. E., Benson, L., & Lowe, M. R. (2017). Behind binge eating: A review of food-specific adaptations of neurocognitive and neuroimaging tasks. Physiology & Behavior, 176, 59–70. 10.1016/j.physbeh.2017.03.037 First citation in articleCrossref MedlineGoogle Scholar

  • De Houwer, J., Tanaka, A., Moors, A., & Tibboel, H. (2018). Kicking the habit: Why evidence for habits in humans might be overestimated. Motivation Science, 4(1), 50–59. 10.1037/mot0000065 First citation in articleCrossrefGoogle Scholar

  • de Wit, S., Niry, D., Wariyar, R., Aitken, M. R. F., & Dickinson, A. (2007). Stimulusoutcome interactions during instrumental discrimination learning by rats and humans. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 1–11. 10.1037/0097-7403.33.1.1 First citation in articleCrossref MedlineGoogle Scholar

  • de Wit, S., Watson, P., Harsay, H. A., Cohen, M. X., van de Vijver, I., & Ridderinkhof, K. R. (2012). Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. The Journal of Neuroscience, 32, 12066–12075. 10.1523/JNEUROSCI.1088-12.2012 First citation in articleCrossref MedlineGoogle Scholar

  • Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–391. 10.1037/0033-2909.130.3.355 First citation in articleCrossref MedlineGoogle Scholar

  • Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annual Review of Psychology, 55, 51–86. 10.1146/annurev.psych.55.090902.142050 First citation in articleCrossref MedlineGoogle Scholar

  • Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general power analysis program. Behavior Research Methods, Instruments, & Computers, 28(1), 1–11. 10.3758/BF03203630 First citation in articleCrossrefGoogle Scholar

  • Foerde, K. (2018). What are habits and do they depend on the striatum? A view from the study of neuropsychological populations. Current Opinion in Behavioral Sciences, 20, 17–24. 10.1016/j.cobeha.2017.08.011 First citation in articleCrossrefGoogle Scholar

  • Fournier, M., d’Arripe-Longueville, F., & Radel, R. (2017). Effects of psychosocial stress on the goal-directed and habit memory systems during learning and later execution. Psychoneuroendocrinology, 77, 275–283. 10.1016/j.psyneuen.2016.12.008 First citation in articleCrossref MedlineGoogle Scholar

  • Friedel, E., Koch, S. P., Wendt, J., Heinz, A., Deserno, L., & Schlagenhauf, F. (2014). Devaluation and sequential decisions: Linking goal-directed and model-based behavior. Frontiers in Human Neuroscience, 8, 587. 10.3389/fnhum.2014.00587 First citation in articleCrossref MedlineGoogle Scholar

  • Goldfarb, E. V., Mendelevich, Y., & Phelps, E. A. (2017). Acute stress time-dependently modulates multiple memory systems. Journal of Cognitive Neuroscience, 29, 1877–1894. 10.1162/jocn_a_01167 First citation in articleCrossref MedlineGoogle Scholar

  • Hartogsveld, B., Quaedflieg, C. W. E. M., van Ruitenbeek, P., & Smeets, T. (2020, April 19). Volumetric and connectivity changes in brain networks associated with reward sensitivity, cognitive control, and negative affect in binge eating disorder and bulimia nervosa. PsyArXiv preprint. 10.31234/osf.io/vdha9 First citation in articleCrossrefGoogle Scholar

  • Hermans, E. J., Henckens, M. J. A. G., Joëls, M., & Fernández, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Cognitive Sciences, 37, 304–314. 10.1016/j.tins.2014.03.006 First citation in articleCrossrefGoogle Scholar

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70. Retrieved from http://www.jstor.org/stable/4615733 First citation in articleGoogle Scholar

  • Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10, 459–466. 10.1038/nrn2632 First citation in articleCrossref MedlineGoogle Scholar

  • Joëls, M., Fernandez, G., & Roozendaal, B. (2011). Stress and emotional memory: A matter of timing. Trends in Cognitive Sciences, 15, 280–288. 10.1016/j.tics.2011.04.004 First citation in articleCrossref MedlineGoogle Scholar

  • Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34, 2–18. 10.1016/j.psyneuen.2008.10.004 First citation in articleCrossref MedlineGoogle Scholar

  • Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49, 764–766. 10.1016/j.jesp.2013.03.013 First citation in articleCrossrefGoogle Scholar

  • Miller, R., Plessow, F., Kirschbaum, C., & Stalder, T. (2013). Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: Evaluation of salivary cortisol pulse detection in panel designs. Psychosomatic Medicine, 840, 832–840. 10.1097/PSY.0000000000000002 First citation in articleCrossrefGoogle Scholar

  • O’Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, reward, and decision making. Annual Review of Psychology, 68, 73–100. 10.1146/annurev-psych-010416-044216 First citation in articleCrossref MedlineGoogle Scholar

  • Ossewaarde, L., Qin, S., van Marle, H. J. F., van Wingen, G. A., Fernández, G., & Hermans, E. J. (2011). Stress-induced reduction in reward-related prefrontal cortex function. Neuroimage, 55(1), 345–352. 10.1016/j.neuroimage.2010.11.068 First citation in articleCrossref MedlineGoogle Scholar

  • Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A., & Daw, N. D. (2013). Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences, 110, 20941–20946. 10.1073/pnas.1312011110 First citation in articleCrossref MedlineGoogle Scholar

  • Pruessner, J. C., Dedovic, K., Khalili-Mahani, N., Engert, V., Pruessner, M., Buss, C., … Lupien, S. (2008). Deactivation of the limbic system during acute psychosocial stress: Evidence from positron emission tomography and functional magnetic resonance imaging studies. Biological Psychiatry, 63, 234–240. 10.1016/j.biopsych.2007.04.041 First citation in articleCrossref MedlineGoogle Scholar

  • Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change, 28, 916–931. 10.1016/S0306-4530(02)00108-7 First citation in articleCrossrefGoogle Scholar

  • Quaedflieg, C. W. E. M., Meyer, T., van Ruitenbeek, P., & Smeets, T. (2017). Examining habituation and sensitization across repetitive laboratory stress inductions using the MAST. Psychoneuroendocrinology, 77, 175–181. 10.1016/j.psyneuen.2016.12.009 First citation in articleCrossref MedlineGoogle Scholar

  • Quaedflieg, C. W. E. M., & Schwabe, L. (2018). Memory dynamics under stress. Memory, 26, 364–376. 10.1080/09658211.2017.1338299 First citation in articleCrossref MedlineGoogle Scholar

  • Quaedflieg, C. W. E. M., Stoffregen, H., Sebalo, I., & Smeets, T. (2019). Stress-induced impairment in goal-directed instrumental behaviour is moderated by baseline working memory. Neurobiology of Learning and Memory, 158, 42–49. 10.1016/j.nlm.2019.01.010 First citation in articleCrossref MedlineGoogle Scholar

  • Razzoli, M., Pearson, C., Crow, S., & Bartolomucci, A. (2017). Stress, overeating and obesity: Insights from human studies and preclinical models. Neuroscience & Biobehavioral Reviews. 76, 154–162. 10.1016/j.neubiorev.2017.01.026 First citation in articleCrossref MedlineGoogle Scholar

  • Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the Acoustical Society of America, 88, 1273–1283. 10.1080/01621459.1993.10476408 First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853–951. 10.1152/physrev.00023.2014 First citation in articleCrossref MedlineGoogle Scholar

  • Schwabe, L. (2017). Memory under stress: From single systems to network changes. European Journal of Neuroscience, 45, 478–489. 10.1111/ejn.13478 First citation in articleCrossref MedlineGoogle Scholar

  • Schwabe, L., & Wolf, O. T. (2009). Stress prompts habit behavior in humans. Journal of Neuroscience, 29, 7191–7198. 10.1523/jneurosci.0979-09.2009 First citation in articleCrossref MedlineGoogle Scholar

  • Schwabe, L., & Wolf, O. T. (2010). Socially evaluated cold pressor stress after instrumental learning favors habits over goal-directed action. Psychoneuroendocrinology, 35, 977–986. 10.1016/j.psyneuen.2009.12.010 First citation in articleCrossref MedlineGoogle Scholar

  • Schwabe, L., & Wolf, O. T. (2011). Stress-induced modulation of instrumental behavior: From goal-directed to habitual control of action. Behavioural Brain Research, 219, 321–328. 10.1016/j.bbr.2010.12.038 First citation in articleCrossref MedlineGoogle Scholar

  • Schwabe, L., Wolf, O. T., & Oitzl, M. S. (2010). Memory formation under stress: Quantity and quality. Neuroscience and Biobehavioral Reviews, 34, 584–591. 10.1016/j.neubiorev.2009.11.015 First citation in articleCrossref MedlineGoogle Scholar

  • Seehagen, S., Schneider, S., Rudolph, J., Ernst, S., & Zmyj, N. (2015). Stress impairs cognitive flexibility in infants. Proceedings of the National Academy of Sciences, 112, 12882–12886. 10.1073/pnas.1508345112 First citation in articleCrossref MedlineGoogle Scholar

  • Sheffield, V. F. (1949). Extinction as a function of partial reinforcement and distribution of practice. Journal of Experimental Psychology, 39(4), 511–526. 10.1037/h0057242 First citation in articleCrossref MedlineGoogle Scholar

  • Shields, G. S., Sazma, M. A., McCullough, A. M., & Yonelinas, A. P. (2017). The effects of acute stress on episodic memory: A meta-analysis and integrative review. Psychological Bulletin, 143, 636–675. 10.1037/bul0000100 First citation in articleCrossref MedlineGoogle Scholar

  • Shilton, A. L., Laycock, R., & Crewther, S. G. (2017). The Maastricht Acute Stress Test (MAST): Physiological and subjective responses in anticipation, and post-stress. Frontiers in Psychology, 8, 567. 10.3389/fpsyg.2017.00567 First citation in articleCrossref MedlineGoogle Scholar

  • Smeets, T. (2011). Acute stress impairs memory retrieval independent of time of day. Psychoneuroendocrinology, 36, 495–501. 10.1016/j.psyneuen.2010.08.001 First citation in articleCrossref MedlineGoogle Scholar

  • Smeets, T., Cornelisse, S., Quaedflieg, C. W. E. M., Meyer, T., Jelicic, M., & Merckelbach, H. (2012). Introducing the Maastricht Acute Stress Test (MAST): A quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses. Psychoneuroendocrinology, 37, 1998–2008. 10.1016/j.psyneuen.2012.04.012 First citation in articleCrossref MedlineGoogle Scholar

  • Smeets, T., Otgaar, H., Candel, I., & Wolf, O. T. (2008). True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology, 33, 1378–1386. 10.1016/j.psyneuen.2008.07.009 First citation in articleCrossref MedlineGoogle Scholar

  • Smeets, T., van Ruitenbeek, P., Hartogsveld, B., & Quaedflieg, C. W. E. M. (2019). Stress-induced reliance on habitual behavior is moderated by cortisol reactivity. Brain and Cognition, 133, 60–71. 10.1016/j.bandc.2018.05.005 First citation in articleCrossref MedlineGoogle Scholar

  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397–409. 10.1038/nrn2647 First citation in articleCrossref MedlineGoogle Scholar

  • Voon, V., Baek, K., Enander, J., Worbe, Y., Morris, L. S., Harrison, N. A., … Daw, N. (2015). Motivation and value influences in the relative balance of goal-directed and habitual behaviours in obsessive-compulsive disorder. Translational Psychiatry, 5, e670. 10.1038/tp.2015.165 First citation in articleCrossref MedlineGoogle Scholar

  • Watson, P., & de Wit, S. (2018). Current limits of experimental research into habits and future directions. Current Opinion in Behavioral Sciences, 20, 33–39. 10.1016/j.cobeha.2017.09.012 First citation in articleCrossrefGoogle Scholar

  • Watson, P., van Wingen, G., & de Wit, S. (2018). Conflicted between goal-directed and habitual control, an fMRI investigation. ENeuro, 5, 1–11. 10.1523/eneuro.0240-18.2018 First citation in articleCrossrefGoogle Scholar

  • Weinstock, S. (1954). Resistance to extinction of a running response following partial reinforcement under widely spaced trials. Journal of Comparative and Physiological Psychology, 47(4), 318–322. 10.1037/h0054129 First citation in articleCrossref MedlineGoogle Scholar

  • Wirz, L., Bogdanov, M., & Schwabe, L. (2018). Habits under stress: Mechanistic insights across different types of learning. Current Opinion in Behavioral Sciences, 20, 9–16. 10.1016/j.cobeha.2017.08.009 First citation in articleCrossrefGoogle Scholar