Skip to main content
Free AccessPosition paper

Exercise therapy for chronic symptomatic peripheral artery disease

A clinical consensus document of the European Society of Cardiology Working Group on Aorta and Peripheral Vascular Diseases in collaboration with the European Society of Vascular Medicine and the European Society for Vascular Surgery

Published Online:https://doi.org/10.1024/0301-1526/a001112

Summary: All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.

References

  • 1 Pelliccia A, Sharma S, Gati S, Back M, Borjesson M, Caselli S, et al. 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J. 2021;42:17–96. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health. 2019;7:e1020–30. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39:763–816. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Frank U, Nikol S, Belch J, Boc V, Brodmann M, Carpentier PH, et al. ESVM guideline on peripheral arterial disease. Vasa. 2019;48:1–79. First citation in articleLinkGoogle Scholar

  • 5 McDermott MM. Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg ischemia. Circ Res. 2015;116:1540–50. First citation in articleCrossref MedlineGoogle Scholar

  • 6 McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, et al. The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study. Ann Intern Med. 2002;136:873–83. First citation in articleCrossref MedlineGoogle Scholar

  • 7 McDermott MM, Liu K, Ferrucci L, Tian L, Guralnik JM, Liao Y, et al. Decline in functional performance predicts later increased mobility loss and mortality in peripheral arterial disease. J Am Coll Cardiol. 2011;57:962–70. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Weitz JI, Byrne J, Clagett GP, Farkouh ME, Porter JM, Sackett DL, et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Rose GA. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull World Health Organ. 1962;27:645–58. First citation in articleMedlineGoogle Scholar

  • 10 McDermott MM, Mehta S, Greenland P. Exertional leg symptoms other than intermittent claudication are common in peripheral arterial disease. Arch Intern Med. 1999;159:387–92. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Hiatt WR, Armstrong EJ, Larson CJ, Brass EP. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease. Circ Res. 2015;116:1527–39. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Seretny M, Colvin LA. Pain management in patients with vascular disease. Br J Anaesth. 2016;117:ii95–ii106. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Tew GA, Ouedraogo N, Nicolas G, Leftheriotis G, Copeland RJ, Abraham P. Impaired somatosensation in patients with isolated proximal-without-distal exercise-related lower-limb ischemia. Clin J Pain. 2012;28:404–9. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Hammad TA, Strefling JA, Zellers PR, Reed GW, Venkatachalam S, Lowry AM, et al. The effect of post-exercise ankle-brachial index on lower extremity revascularization. JACC Cardiovasc Interv. 2015;8:1238–44. First citation in articleCrossref MedlineGoogle Scholar

  • 15 McDermott MM, Dayanidhi S, Kosmac K, Saini S, Slysz J, Leeuwenburgh C, et al. Walking exercise therapy effects on lower extremity skeletal muscle in peripheral artery disease. Circ Res. 2021;128:1851–67. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Sheikh MA, Bhatt DL, Li J, Lin S, Bartholomew JR. Usefulness of postexercise ankle-brachial index to predict all-cause mortality. Am J Cardiol. 2011;107:778–82. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–67. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Gokce N, Vita JA, Bader DS, Sherman DL, Hunter LM, Holbrook M, et al. Effect of exercise on upper and lower extremity endothelial function in patients with coronary artery disease. Am J Cardiol. 2002;90:124–7. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA. Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. Am J Physiol. 1996;270:H1435–40. First citation in articleMedlineGoogle Scholar

  • 20 Vita JA, Hamburg NM. Does endothelial dysfunction contribute to the clinical status of patients with peripheral arterial disease? Can J Cardiol. 2010;26:45A–50A. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, et al. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol (1985). 2011;111:81–6. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Beckman JA, Preis O, Ridker PM, Gerhard-Herman M. Comparison of usefulness of inflammatory markers in patients with versus without peripheral arterial disease in predicting adverse cardiovascular outcomes (myocardial infarction, stroke, and death). Am J Cardiol. 2005;96:1374–8. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FG. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation. 2005;112:976–83. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Vidula H, Tian L, Liu K, Criqui MH, Ferrucci L, Pearce WH, et al. Biomarkers of inflammation and thrombosis as predictors of near-term mortality in patients with peripheral arterial disease: a cohort study. Ann Intern Med. 2008;148:85–93. First citation in articleCrossref MedlineGoogle Scholar

  • 25 McDermott MM, Ferrucci L, Liu K, Guralnik JM, Tian L, Liao Y, et al. Leg symptom categories and rates of mobility decline in peripheral arterial disease. J Am Geriatr Soc. 2010;58:1256–62. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Gardner AW, Forrester L, Smith GV. Altered gait profile in subjects with peripheral arterial disease. Vasc Med. 2001;6:31–4. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Gommans LNM, Smid AT, Scheltinga MRM, Cancrinus E, Brooijmans FAM, Meijer K, et al. Prolonged stance phase during walking in intermittent claudication. J Vasc Surg. 2017;66:515–22. First citation in articleCrossref MedlineGoogle Scholar

  • 28 McDermott MM, Liu K, Greenland P, Guralnik JM, Criqui MH, Chan C, et al. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292:453–61. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Gardner AW, Montgomery PS, Ritti-Dias RM, Forrester L. The effect of claudication pain on temporal and spatial gait measures during self-paced ambulation. Vasc Med. 2010;15:21–6. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Koutakis P, Johanning JM, Haynatzki GR, Myers SA, Stergiou N, Longo GM, et al. Abnormal joint powers before and after the onset of claudication symptoms. J Vasc Surg. 2010;52:340–7. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Koutakis P, Pipinos II, Myers SA, Stergiou N, Lynch TG, Johanning JM. Joint torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication. J Vasc Surg. 2010;51:80–8. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Schieber MN, Hasenkamp RM, Pipinos II, Johanning JM, Stergiou N, DeSpiegelaere HK, et al. Muscle strength and control characteristics are altered by peripheral artery disease. J Vasc Surg. 2017;66:178–86. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Gardner AW, Montgomery PS. Impaired balance and higher prevalence of falls in subjects with intermittent claudication. J Gerontol A Biol Sci Med Sci. 2001;56:M454–8. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Gohil RA, Mockford KA, Mazari F, Khan J, Vanicek N, Chetter IC, et al. Balance impairment, physical ability, and its link with disease severity in patients with intermittent claudication. Ann Vasc Surg. 2013;27:68–74. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Chaudru S, Jehannin P, de Mullenheim PY, Klein H, Jaquinandi V, Mahe G, et al. Using wearable monitors to assess daily walking limitations induced by ischemic pain in peripheral artery disease. Scand J Med Sci Sports. 2019;29:1813–26. First citation in articleCrossref MedlineGoogle Scholar

  • 36 McDermott MM, Guralnik JM, Tian L, Liu K, Ferrucci L, Liao Y, et al. Associations of borderline and low normal ankle-brachial index values with functional decline at 5-year follow-up: the WALCS (Walking and Leg Circulation Study). J Am Coll Cardiol. 2009;53:1056–62. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126:2890–909. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Treat-Jacobson D, McDermott MM, Beckman JA, Burt MA, Creager MA, Ehrman JK, et al. Implementation of supervised exercise therapy for patients with symptomatic peripheral artery disease: a science advisory from the American Heart Association. Circulation. 2019;140:e700–10. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Gardner AW, Skinner JS, Cantwell BW, Smith LK. Progressive vs single-stage treadmill tests for evaluation of claudication. Med Sci Sports Exerc. 1991;23:402–8. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Hiatt WR, Hirsch AT, Regensteiner JG, Brass EP. Clinical trials for claudication. Assessment of exercise performance, functional status, and clinical end points. Vascular Clinical Trialists. Circulation. 1995;92:614–21. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Hiatt WR, Rogers RK, Brass EP. The treadmill is a better functional test than the 6-minute walk test in therapeutic trials of patients with peripheral artery disease. Circulation. 2014;130:69–78. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Nicolai SP, Viechtbauer W, Kruidenier LM, Candel MJ, Prins MH, Teijink JA. Reliability of treadmill testing in peripheral arterial disease: a meta-regression analysis. J Vasc Surg. 2009;50:322–9. First citation in articleCrossref MedlineGoogle Scholar

  • 43 ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7. First citation in articleGoogle Scholar

  • 44 Chandra D, Kulkarni HS, Sciurba F. Learning from the learning effect in the six-minute-walk test. Am J Respir Crit Care Med. 2012;185:684. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Tew G, Copeland R, Le Faucheur A, Gernigon M, Nawaz S, Abraham P. Feasibility and validity of self-reported walking capacity in patients with intermittent claudication. J Vasc Surg. 2013;57:1227–34. First citation in articleCrossref MedlineGoogle Scholar

  • 46 McDermott MM, Guralnik JM, Criqui MH, Liu K, Kibbe MR, Ferrucci L. Six-minute walk is a better outcome measure than treadmill walking tests in therapeutic trials of patients with peripheral artery disease. Circulation. 2014;130:61–8. First citation in articleCrossref MedlineGoogle Scholar

  • 47 McDermott MM, Ades PA, Dyer A, Guralnik JM, Kibbe M, Criqui MH. Corridor-based functional performance measures correlate better with physical activity during daily life than treadmill measures in persons with peripheral arterial disease. J Vasc Surg. 2008;48:1231–7. First citation in articleCrossref MedlineGoogle Scholar

  • 48 McDermott MM, Guralnik JM, Tian L, Ferrucci L, Liu K, Liao Y, et al. Baseline functional performance predicts the rate of mobility loss in persons with peripheral arterial disease. J Am Coll Cardiol. 2007;50:974–82. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Sandberg A, Cider A, Jivegard L, Nordanstig J, Wittboldt S, Back M. Test-retest reliability, agreement, and minimal detectable change in the 6-minute walk test in patients with intermittent claudication. J Vasc Surg. 2020;71:197–203. First citation in articleCrossref MedlineGoogle Scholar

  • 50 McDermott MM, Tian L, Criqui MH, Ferrucci L, Conte MS, Zhao L, et al. Meaningful change in 6-minute walk in people with peripheral artery disease. J Vasc Surg. 2021;73:267–76. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Gardner AW, Montgomery PS, Wang M. Minimal clinically important differences in treadmill, 6-minute walk, and patient-based outcomes following supervised and home-based exercise in peripheral artery disease. Vasc Med. 2018;23:349–57. First citation in articleCrossref MedlineGoogle Scholar

  • 52 de Mullenheim PY, Chaudru S, Mahe G, Prioux J, Le Faucheur A. Clinical interest of ambulatory assessment of physical activity and walking capacity in peripheral artery disease. Scand J Med Sci Sports. 2016;26:716–30. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Abraham P, Noury-Desvaux B, Gernigon M, Mahe G, Sauvaget T, Leftheriotis G, et al. The inter- and intra-unit variability of a low-cost GPS data logger/receiver to study human outdoor walking in view of health and clinical studies. PLoS One. 2012;7:e31338. First citation in articleCrossref MedlineGoogle Scholar

  • 54 Taoum A, Chaudru S, DE Müllenheim PY, Congnard F, Emily M, Noury-Desvaux B, et al. Comparison of activity monitors accuracy in assessing intermittent outdoor walking. Med Sci Sports Exerc. 2021;53:1303–14. First citation in articleCrossref MedlineGoogle Scholar

  • 55 Hochsmann C, Knaier R, Eymann J, Hintermann J, Infanger D, Schmidt-Trucksass A. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scand J Med Sci Sports. 2018;28:1818–27. First citation in articleCrossref MedlineGoogle Scholar

  • 56 Le Faucheur A, Abraham P, Jaquinandi V, Bouye P, Saumet JL, Noury-Desvaux B. Measurement of walking distance and speed in patients with peripheral arterial disease: a novel method using a global positioning system. Circulation. 2008;117:897–904. First citation in articleCrossref MedlineGoogle Scholar

  • 57 McDermott MM, Tian L, Ferrucci L, Liu K, Guralnik JM, Liao Y, et al. Associations between lower extremity ischemia, upper and lower extremity strength, and functional impairment with peripheral arterial disease. J Am Geriatr Soc. 2008;56:724–9. First citation in articleCrossref MedlineGoogle Scholar

  • 58 Pizzimenti M, Meyer A, Charles AL, Giannini M, Chakfe N, Lejay A, et al. Sarcopenia and peripheral arterial disease: a systematic review. J Cachexia Sarcopenia Muscle. 2020;11:866–86. First citation in articleCrossref MedlineGoogle Scholar

  • 59 Ritti-Dias RM, Basyches M, Camara L, Puech-Leao P, Battistella L, Wolosker N. Test-retest reliability of isokinetic strength and endurance tests in patients with intermittent claudication. Vasc Med. 2010;15:275–8. First citation in articleCrossref MedlineGoogle Scholar

  • 60 Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94. First citation in articleCrossref MedlineGoogle Scholar

  • 61 Lanzi S, Pousaz A, Calanca L, Mazzolai L. Sit to stand muscle power is related to functional performance at baseline and after supervised exercise training in patients with lower extremity peripheral artery disease. Eur J Vasc Endovasc Surg. 2023;65:521–7. First citation in articleCrossref MedlineGoogle Scholar

  • 62 Arndt H, Nordanstig J, Bertges DJ, Budtz-Lilly J, Venermo M, Espada CL, et al. A Delphi consensus on patient reported outcomes for registries and trials including patients with intermittent claudication: recommendations and reporting standard. Eur J Vasc Endovasc Surg. 2022;64:526–33. First citation in articleCrossref MedlineGoogle Scholar

  • 63 Raja A, Spertus J, Yeh RW, Secemsky EA. Assessing health-related quality of life among patients with peripheral artery disease: a review of the literature and focus on patient-reported outcome measures. Vasc Med. 2021;26:317–25. First citation in articleCrossref MedlineGoogle Scholar

  • 64 Treat-Jacobson D, McDermott MM, Bronas UG, Campia U, Collins TC, Criqui MH, et al. Optimal exercise programs for patients with peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2019;139:e10–33. First citation in articleCrossref MedlineGoogle Scholar

  • 65 Regensteiner JG, Hiatt WR, Coll JR, Criqui MH, Treat-Jacobson D, McDermott MM, et al. The impact of peripheral arterial disease on health-related quality of life in the Peripheral Arterial Disease Awareness, Risk, and Treatment: New Resources for Survival (PARTNERS) program. Vasc Med. 2008;13:15–24. First citation in articleCrossref MedlineGoogle Scholar

  • 66 Kim M, Kim Y, Ryu GW, Choi M. Functional status and health-related quality of life in patients with peripheral artery disease: a cross-sectional study. Int J Environ Res Public Health. 2021;18:10941. First citation in articleCrossref MedlineGoogle Scholar

  • 67 Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W. Effects of physical activity on life expectancy with cardiovascular disease. Arch Intern Med. 2005;165:2355–60. First citation in articleCrossref MedlineGoogle Scholar

  • 68 Dostalova R, Stillman C, Erickson KI, Slepicka P, Mudrak J. The relationship between physical activity, self-perceived health, and cognitive function in older adults. Brain Sci. 2021;11:492. First citation in articleCrossref MedlineGoogle Scholar

  • 69 Frank U, Nikol S, Belch J. 5 Conservative treatment for PAD—risk factor management. Vasa. 2019;48:1–12. First citation in articleLinkGoogle Scholar

  • 70 Harwood A, Pymer S, Ingle L, Doherty P, Chetter I, Parmenter B, et al. Exercise training for intermittent claudication: a narrative review and summary of guidelines for practitioners. BMJ Open Sport Exercise Med. 2020;6:e000897. First citation in articleCrossref MedlineGoogle Scholar

  • 71 Gommans LN, Fokkenrood HJ, van Dalen HC, Scheltinga MR, Teijink JA, Peters RJ. Safety of supervised exercise therapy in patients with intermittent claudication. J Vasc Surg. 2015;61:512–8. First citation in articleCrossref MedlineGoogle Scholar

  • 72 Bronas UG, Regensteiner JG. Connecting the past to the present: a historical review of exercise training for peripheral artery disease. Vasc Med. 2022;27:174–85. First citation in articleCrossref MedlineGoogle Scholar

  • 73 Penin-Grandes S, Lopez-Ortiz S, Maroto-Izquierdo S, Menendez H, Pinto-Fraga J, Martin-Hernandez J, et al. Winners do what they fear: exercise and peripheral arterial disease-an umbrella review. Eur J Prev Cardiol. 2023:zwad261. First citation in articleGoogle Scholar

  • 74 Lane R, Harwood A, Watson L, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2017;12:CD000990. First citation in articleMedlineGoogle Scholar

  • 75 Fakhry F, van de Luijtgaarden KM, Bax L, den Hoed PT, Hunink MG, Rouwet EV, et al. Supervised walking therapy in patients with intermittent claudication. J Vasc Surg. 2012;56:1132–42. First citation in articleCrossref MedlineGoogle Scholar

  • 76 Lanzi S, Boichat J, Calanca L, Aubertin P, Malatesta D, Mazzolai L. Gait changes after supervised exercise training in patients with symptomatic lower extremity peripheral artery disease. Vasc Med. 2021;26:259–66. First citation in articleCrossref MedlineGoogle Scholar

  • 77 Lanzi S, Boichat J, Calanca L, Mazzolai L, Malatesta D. Supervised exercise training improves 6 min walking distance and modifies gait pattern during pain-free walking condition in patients with symptomatic lower extremity peripheral artery disease. Sensors (Basel). 2021;21:7989. First citation in articleCrossref MedlineGoogle Scholar

  • 78 Fassora M, Calanca L, Jaques C, Mazzolai L, Kayser B, Lanzi S. Intensity-dependent effects of exercise therapy on walking performance and aerobic fitness in symptomatic patients with lower-extremity peripheral artery disease: a systematic review and meta-analysis. Vasc Med. 2022;27:158–70. First citation in articleCrossref MedlineGoogle Scholar

  • 79 Lanzi S, Pousaz A, Calanca L, Mazzolai L. Time-course evolution of functional performance during a 3-month supervised exercise training program in patients with symptomatic peripheral artery disease. Vasc Med. 2023;28:404–11. First citation in articleCrossref MedlineGoogle Scholar

  • 80 Parmenter BJ, Dieberg G, Phipps G, Smart NA. Exercise training for health-related quality of life in peripheral artery disease: a systematic review and meta-analysis. Vasc Med. 2015;20:30–40. First citation in articleCrossref MedlineGoogle Scholar

  • 81 Parmenter BJ, Dieberg G, Smart NA. Exercise training for management of peripheral arterial disease: a systematic review and meta-analysis. Sports Med. 2015;45:231–44. First citation in articleCrossref MedlineGoogle Scholar

  • 82 Schieber MN, Pipinos II, Johanning JM, Casale GP, Williams MA, DeSpiegelaere HK, et al. Supervised walking exercise therapy improves gait biomechanics in patients with peripheral artery disease. J Vasc Surg. 2019;71:575–83. First citation in articleCrossref MedlineGoogle Scholar

  • 83 Siercke M, Jorgensen LP, Missel M, Thygesen LC, Moller SP, Sillesen H, et al. Cardiovascular rehabilitation increases walking distance in patients with intermittent claudication. Results of the CIPIC Rehab Study: a randomised controlled trial. Eur J Vasc Endovasc Surg. 2021;62:768–76. First citation in articleCrossref MedlineGoogle Scholar

  • 84 Brown T, Forster RB, Cleanthis M, Mikhailidis DP, Stansby G, Stewart M. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2021;6:CD003748. First citation in articleMedlineGoogle Scholar

  • 85 De Haro J, Bleda S, Varela C, Esparza L, Acin F, Bosentan Population-Based Randomized Trial for Clinical and Endothelial Function Assessment on Endothelin Antagonist Therapy in Patients With Intermittent Claudication CLAU Investigators. Effect of bosentan on claudication distance and endothelium-dependent vasodilation in Hispanic patients with peripheral arterial disease. Am J Cardiol. 2016;117:295–301. First citation in articleCrossref MedlineGoogle Scholar

  • 86 Omarjee L, Le Pabic E, Custaud MA, Fontaine C, Locher C, Renault A, et al. Effects of sildenafil on maximum walking time in patients with arterial claudication: the ARTERIOFIL study. Vascul Pharmacol. 2019;118–119:106563. First citation in articleCrossref MedlineGoogle Scholar

  • 87 Suzuki J, Shimamura M, Suda H, Wakayama K, Kumagai H, Ikeda Y, et al. Current therapies and investigational drugs for peripheral arterial disease. Hypertens Res. 2016;39:183–91. First citation in articleCrossref MedlineGoogle Scholar

  • 88 Broderick C, Forster R, Abdel-Hadi M, Salhiyyah K. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2020;10:CD005262. First citation in articleMedlineGoogle Scholar

  • 89 Jansen SC, Abaraogu UO, Lauret GJ, Fakhry F, Fokkenrood HJ, Teijink JA. Modes of exercise training for intermittent claudication. Cochrane Database Syst Rev. 2020;8:CD009638. First citation in articleMedlineGoogle Scholar

  • 90 Parmenter BJ, Raymond J, Dinnen P, Lusby RJ, Fiatarone Singh MA. High-intensity progressive resistance training improves flat-ground walking in older adults with symptomatic peripheral arterial disease. J Am Geriatr Soc. 2013;61:1964–70. First citation in articleCrossref MedlineGoogle Scholar

  • 91 Ritti-Dias RM, Wolosker N, de Moraes Forjaz CL, Carvalho CR, Cucato GG, Leao PP, et al. Strength training increases walking tolerance in intermittent claudication patients: randomized trial. J Vasc Surg. 2010;51:89–95. First citation in articleCrossref MedlineGoogle Scholar

  • 92 Sanderson B, Askew C, Stewart I, Walker P, Gibbs H, Green S. Short-term effects of cycle and treadmill training on exercise tolerance in peripheral arterial disease. J Vasc Surg. 2006;44:119–27. First citation in articleCrossref MedlineGoogle Scholar

  • 93 Collins EG, Edwin Langbein W, Orebaugh C, Bammert C, Hanson K, Reda D, et al. Polestriding exercise and vitamin E for management of peripheral vascular disease. Med Sci Sports Exerc. 2003;35:384–93. First citation in articleCrossref MedlineGoogle Scholar

  • 94 Collins EG, Langbein WE, Orebaugh C, Bammert C, Hanson K, Reda D, et al. Cardiovascular training effect associated with polestriding exercise in patients with peripheral arterial disease. J Cardiovasc Nurs. 2005;20:177–85. First citation in articleCrossref MedlineGoogle Scholar

  • 95 Calanca L, Lanzi S, Ney B, Berchtold A, Mazzolai L. Multimodal supervised exercise significantly improves walking performances without changing hemodynamic parameters in patients with symptomatic lower extremity peripheral artery disease. Vasc Endovascular Surg. 2020;54:605–11. First citation in articleCrossref MedlineGoogle Scholar

  • 96 Lanzi S, Calanca L, Berchtold A, Mazzolai L. Improvement in 6-minute walking distance after supervised exercise training is related to changes in quality of life in patients with lower extremity peripheral artery disease. J Clin Med. 2021;10:3330. First citation in articleCrossref MedlineGoogle Scholar

  • 97 Lanzi S, Calanca L, Borgeat Kaeser A, Mazzolai L. Walking performances and muscle oxygen desaturation are increased after supervised exercise training in Takayasu arteritis: a case report and a review of the literature. Eur Heart J Case Rep. 2018;2:yty123. First citation in articleMedlineGoogle Scholar

  • 98 Ney B, Lanzi S, Calanca L, Mazzolai L. Multimodal supervised exercise training is effective in improving long term walking performance in patients with symptomatic lower extremity peripheral artery disease. J Clin Med. 2021;10:2057. First citation in articleCrossref MedlineGoogle Scholar

  • 99 Tew G, Nawaz S, Zwierska I, Saxton JM. Limb-specific and cross-transfer effects of arm-crank exercise training in patients with symptomatic peripheral arterial disease. Clin Sci (Lond). 2009;117:405–13. First citation in articleCrossref MedlineGoogle Scholar

  • 100 Treat-Jacobson D, Bronas UG, Leon AS. Efficacy of arm-ergometry versus treadmill exercise training to improve walking distance in patients with claudication. Vasc Med. 2009;14:203–13. First citation in articleCrossref MedlineGoogle Scholar

  • 101 Parmenter BJ, Raymond J, Dinnen P, Singh MA. A systematic review of randomized controlled trials: walking versus alternative exercise prescription as treatment for intermittent claudication. Atherosclerosis. 2011;218:1–12. First citation in articleCrossref MedlineGoogle Scholar

  • 102 McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301:165–74. First citation in articleCrossref MedlineGoogle Scholar

  • 103 Bulmer AC, Coombes JS. Optimising exercise training in peripheral arterial disease. Sports Med. 2004;34:983–1003. First citation in articleCrossref MedlineGoogle Scholar

  • 104 Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA. 1995;274:975–80. First citation in articleCrossref MedlineGoogle Scholar

  • 105 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81. First citation in articleCrossref MedlineGoogle Scholar

  • 106 Au TB, Golledge J, Walker PJ, Haigh K, Nelson M. Peripheral arterial disease—diagnosis and management in general practice. Aust Fam Physician. 2013;42:397–400. First citation in articleMedlineGoogle Scholar

  • 107 Hammond MM, Spring B, Rejeski WJ, Sufit R, Criqui MH, Tian L, et al. Effects of walking exercise at a pace with versus without ischemic leg symptoms on functional performance measures in people with lower extremity peripheral artery disease: the LITE randomized clinical trial. J Am Heart Assoc. 2022;11:e025063. First citation in articleCrossref MedlineGoogle Scholar

  • 108 McDermott MM, Spring B, Tian L, Treat-Jacobson D, Ferrucci L, Lloyd-Jones D, et al. Effect of low-intensity vs high-intensity home-based walking exercise on walk distance in patients with peripheral artery disease: the LITE randomized clinical trial. JAMA. 2021;325:1266–76. First citation in articleCrossref MedlineGoogle Scholar

  • 109 Mika P, Konik A, Januszek R, Petriczek T, Mika A, Nowobilski R, et al. Comparison of two treadmill training programs on walking ability and endothelial function in intermittent claudication. Int J Cardiol. 2013;168:838–42. First citation in articleCrossref MedlineGoogle Scholar

  • 110 Novakovic M, Krevel B, Rajkovic U, Vizintin Cuderman T, Jansa Trontelj K, Fras Z, et al. Moderate-pain versus pain-free exercise, walking capacity, and cardiovascular health in patients with peripheral artery disease. J Vasc Surg. 2019;70:148–56. First citation in articleCrossref MedlineGoogle Scholar

  • 111 Perks J, Zaccardi F, Paterson C, Houghton JSM, Nickinson ATO, Pepper CJ, et al. Effect of high-pain versus low-pain structured exercise on walking ability in people with intermittent claudication: meta-analysis. Br J Surg. 2022;109:686–94. First citation in articleCrossref MedlineGoogle Scholar

  • 112 Seed SA, Harwood AE, Sinclair J, Pymer S, Caldow E, Ingle L, et al. A systematic review of exercise prescription in patients with intermittent claudication: does pain matter? Ann Vasc Surg. 2021;77:315–23. First citation in articleCrossref MedlineGoogle Scholar

  • 113 Birkett ST, Sinclair J, Seed SA, Pymer S, Caldow E, Ingle L, et al. Effects of exercise prescribed at different levels of claudication pain on walking performance in patients with intermittent claudication: a protocol for a randomised controlled trial. Ther Adv Cardiovasc Dis. 2022;16:17539447221108817. First citation in articleCrossrefGoogle Scholar

  • 114 Lanzi S, Mazzolai L. Commentary to Seed, et al. What is the correct level of claudication pain to prescribe? Universal inconsistency within guidelines, a painful issue. Vascular. 2023. https://doi.org/10.1177/17085381231160931. [Epub 5 April 2023]. First citation in articleCrossref MedlineGoogle Scholar

  • 115 Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59. First citation in articleCrossref MedlineGoogle Scholar

  • 116 Hansen D, Abreu A, Ambrosetti M, Cornelissen V, Gevaert A, Kemps H, et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2022;29:230–45. First citation in articleCrossref MedlineGoogle Scholar

  • 117 Wood TM, Maddalozzo GF, Harter RA. Accuracy of seven equations for predicting 1-RM performance of apparently healthy, sedentary older adults. Meas Phys Educ Exerc Sci. 2002;6:67–94. First citation in articleCrossrefGoogle Scholar

  • 118 Parmenter BJ, Mavros Y, Ritti Dias R, King S, Fiatarone Singh M. Resistance training as a treatment for older persons with peripheral artery disease: a systematic review and meta-analysis. Br J Sports Med. 2019;54:452–61. First citation in articleMedlineGoogle Scholar

  • 119 Pymer S, Ibeggazene S, Palmer J, Tew GA, Ingle L, Smith GE, et al. An updated systematic review and meta-analysis of home-based exercise programs for individuals with intermittent claudication. J Vasc Surg. 2021;74:2076–85. First citation in articleCrossref MedlineGoogle Scholar

  • 120 van den Houten MML, Hageman D, Gommans LNM, Kleijnen J, Scheltinga MRM, Teijink JAW. The effect of supervised exercise, home based exercise and endovascular revascularisation on physical activity in patients with intermittent claudication: a network meta-analysis. Eur J Vasc Endovasc Surg. 2019;58:383–92. First citation in articleCrossref MedlineGoogle Scholar

  • 121 Rejeski WJ, Spring B, Domanchuk K, Tao H, Tian L, Zhao L, et al. A group-mediated, home-based physical activity intervention for patients with peripheral artery disease: effects on social and psychological function. J Transl Med. 2014;12:29. First citation in articleCrossref MedlineGoogle Scholar

  • 122 Fakhry F, Spronk S, de Ridder M, den Hoed PT, Hunink MG. Long-term effects of structured home-based exercise program on functional capacity and quality of life in patients with intermittent claudication. Arch Phys Med Rehabil. 2011;92:1066–73. First citation in articleCrossref MedlineGoogle Scholar

  • 123 McDermott MM, Guralnik JM, Criqui MH, Ferrucci L, Zhao L, Liu K, et al. Home-based walking exercise in peripheral artery disease: 12-month follow-up of the GOALS randomized trial. J Am Heart Assoc. 2014;3:e000711. First citation in articleCrossref MedlineGoogle Scholar

  • 124 Waddell A, Seed S, Broom DR, McGregor G, Birkett ST, Harwood AE. Safety of home-based exercise for people with intermittent claudication: a systematic review. Vasc Med. 2022;27:186–92. First citation in articleCrossref MedlineGoogle Scholar

  • 125 Lamberti N, Lopez-Soto PJ, Guerzoni F, Napoli N, Gasbarro V, Zamboni P, et al. Changes in exercise capacity and risk of all-cause mortality in patients with peripheral artery disease: a 10-year retrospective cohort study. Intern Emerg Med. 2020;15:289–98. First citation in articleCrossref MedlineGoogle Scholar

  • 126 Hageman D, Fokkenrood HJ, Gommans LN, van den Houten MM, Teijink JA. Supervised exercise therapy versus home-based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst Rev. 2018;4:CD005263. First citation in articleMedlineGoogle Scholar

  • 127 Al-Jundi W, Madbak K, Beard JD, Nawaz S, Tew GA. Systematic review of home-based exercise programmes for individuals with intermittent claudication. Eur J Vasc Endovasc Surg. 2013;46:690–706. First citation in articleCrossref MedlineGoogle Scholar

  • 128 Dua A, Gologorsky R, Savage D, Rens N, Gandhi N, Brooke B, et al. National assessment of availability, awareness, and utilization of supervised exercise therapy for peripheral artery disease patients with intermittent claudication. J Vasc Surg. 2020;71:1702–7. First citation in articleCrossref MedlineGoogle Scholar

  • 129 Haque A. Few UK vascular centres offer a fully NICE-compliant supervised exercise programme: a national audit. Ann R Coll Surg Engl. 2022;104:130–7. First citation in articleCrossrefGoogle Scholar

  • 130 Harwood AE, Pymer S, Ibeggazene S, Ingle L, Caldow E, Birkett ST. Provision of exercise services in patients with peripheral artery disease in the United Kingdom. Vascular. 2022;30:874–81. First citation in articleCrossref MedlineGoogle Scholar

  • 131 Makris GC, Lattimer CR, Lavida A, Geroulakos G. Availability of supervised exercise programs and the role of structured home-based exercise in peripheral arterial disease. Eur J Vasc Endovasc Surg. 2012;44:569–75.; discussion 76. First citation in articleCrossref MedlineGoogle Scholar

  • 132 Gardner AW, Parker DE, Montgomery PS, Blevins SM. Diabetic women are poor responders to exercise rehabilitation in the treatment of claudication. J Vasc Surg. 2014;59:1036–43. First citation in articleCrossref MedlineGoogle Scholar

  • 133 Manfredini R, Lamberti N, Manfredini F, Straudi S, Fabbian F, Rodriguez Borrego MA, et al. Gender differences in outcomes following a pain-free, home-based exercise program for claudication. J Womens Health (Larchmt). 2019;28:1313–21. First citation in articleCrossref MedlineGoogle Scholar

  • 134 Gardner AW, Parker DE, Montgomery PS. Sex-specific predictors of improved walking with step-monitored, home-based exercise in peripheral artery disease. Vasc Med. 2015;20:424–31. First citation in articleCrossref MedlineGoogle Scholar

  • 135 Collins TC, Lunos S, Carlson T, Henderson K, Lightbourne M, Nelson B, et al. Effects of a home-based walking intervention on mobility and quality of life in people with diabetes and peripheral arterial disease: a randomized controlled trial. Diabetes Care. 2011;34:2174–9. First citation in articleCrossref MedlineGoogle Scholar

  • 136 Lamberti N, Malagoni AM, Ficarra V, Basaglia N, Manfredini R, Zamboni P, et al. Structured home-based exercise versus invasive treatment: a mission impossible? A pilot randomized study in elderly patients with intermittent claudication. Angiology. 2016;67:772–80. First citation in articleCrossref MedlineGoogle Scholar

  • 137 McDermott MM, Polonsky TS. Home-based exercise: a therapeutic option for peripheral artery disease. Circulation. 2016;134:1127–9. First citation in articleCrossref MedlineGoogle Scholar

  • 138 Chan C, Sounderajah V, Normahani P, Acharya A, Markar SR, Darzi A, et al. Wearable activity monitors in home based exercise therapy for patients with intermittent claudication: a systematic review. Eur J Vasc Endovasc Surg. 2021;61:676–87. First citation in articleCrossref MedlineGoogle Scholar

  • 139 Kim M, Kim C, Kim E, Choi M. Effectiveness of mobile health-based exercise interventions for patients with peripheral artery disease: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2021;9:e24080. First citation in articleCrossref MedlineGoogle Scholar

  • 140 Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159:738–49. First citation in articleCrossref MedlineGoogle Scholar

  • 141 Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21:301–14. First citation in articleCrossref MedlineGoogle Scholar

  • 142 Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch. 2009;457:963–77. First citation in articleCrossref MedlineGoogle Scholar

  • 143 Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008;454:463–9. First citation in articleCrossref MedlineGoogle Scholar

  • 144 Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69:1465–508. First citation in articleCrossref MedlineGoogle Scholar

  • 145 Heiss C, Olinic DM, Belch JJF, Brodmann M, Mazzolai L, Stanek A, et al. Management of chronic peripheral artery disease patients with indication for endovascular revascularization. Vasa. 2022;51:121–37. First citation in articleLinkGoogle Scholar

  • 146 Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:1425–43. First citation in articleCrossref MedlineGoogle Scholar

  • 147 Koelemay MJW, van Reijen NS, van Dieren S, Frans FA, Vermeulen EJG, Buscher H, et al. Editor’s Choice – Randomised clinical trial of supervised exercise therapy vs. endovascular revascularisation for intermittent claudication caused by iliac artery obstruction: the SUPER study. Eur J Vasc Endovasc Surg. 2022;63:421–9. First citation in articleCrossref MedlineGoogle Scholar

  • 148 Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, et al. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: six-month outcomes from the Claudication: Exercise versus Endoluminal Revascularization (CLEVER) study. Circulationz. 2012;125:130–9. First citation in articleCrossref MedlineGoogle Scholar

  • 149 Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER III, Cohen DJ, Reynolds MR, et al. Supervised exercise, stent revascularization, or medical therapy for claudication due to aortoiliac peripheral artery disease: the CLEVER study. J Am Coll Cardiol. 2015;65:999–1009. First citation in articleCrossref MedlineGoogle Scholar

  • 150 Koppe-Schmeisser F, Schwaderlapp M, Schmeisser J, Dopheide JF, Munzel T, Daiber A, et al. Influence of peripheral transluminal angioplasty alongside exercise training on oxidative stress and inflammation in patients with peripheral arterial disease. J Clin Med. 2021;10:5851. First citation in articleCrossref MedlineGoogle Scholar

  • 151 Pandey A, Banerjee S, Ngo C, Mody P, Marso SP, Brilakis ES, et al. Comparative efficacy of endovascular revascularization versus supervised exercise training in patients with intermittent claudication: meta-analysis of randomized controlled trials. JACC Cardiovasc Interv. 2017;10:712–24. First citation in articleCrossref MedlineGoogle Scholar

  • 152 Fakhry F, Fokkenrood HJ, Spronk S, Teijink JA, Rouwet EV, Hunink MGM. Endovascular revascularisation versus conservative management for intermittent claudication. Cochrane Database Syst Rev. 2018;3:CD010512. First citation in articleMedlineGoogle Scholar

  • 153 Badger SA, Soong CV, O'Donnell ME, Boreham CA, McGuigan KE. Benefits of a supervised exercise program after lower limb bypass surgery. Vasc Endovascular Surg. 2007;41:27–32. First citation in articleCrossref MedlineGoogle Scholar

  • 154 Kobayashi T, Hamamoto M, Okazaki T, Honma T, Iba K, Takakuwa T, et al. Effectiveness of continuous unsupervised exercise therapy after above-knee femoropopliteal bypass. Vascular. 2021;29:387–95. First citation in articleCrossref MedlineGoogle Scholar

  • 155 Meneses AL, Ritti-Dias RM, Parmenter B, Golledge J, Askew CD. Combined lower limb revascularisation and supervised exercise training for patients with peripheral arterial disease: a systematic review of randomised controlled trials. Sports Med 2017;47:987–1002. First citation in articleCrossref MedlineGoogle Scholar

  • 156 Issa SM, Hoeks SE, Scholte op Reimer WJ, Van Gestel YR, Lenzen MJ, Verhagen HJ, et al. Health-related quality of life predicts long-term survival in patients with peripheral artery disease. Vasc Med. 2010;15:163–9. First citation in articleCrossref MedlineGoogle Scholar

  • 157 Gardner AW, Parker DE, Montgomery PS, Scott KJ, Blevins SM. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: a randomized controlled trial. Circulation. 2011;123:491–8. First citation in articleCrossref MedlineGoogle Scholar

  • 158 Patterson RB, Pinto B, Marcus B, Colucci A, Braun T, Roberts M. Value of a supervised exercise program for the therapy of arterial claudication. J Vasc Surg. 1997;25:312–8. First citation in articleCrossref MedlineGoogle Scholar

  • 159 Tsai JC, Chan P, Wang CH, Jeng C, Hsieh MH, Kao PF, et al. The effects of exercise training on walking function and perception of health status in elderly patients with peripheral arterial occlusive disease. J Intern Med. 2002;252:448–55. First citation in articleCrossref MedlineGoogle Scholar

  • 160 Nicolai SP, Teijink JA, Prins MH. Exercise Therapy in Peripheral Arterial Disease Study G. Multicenter randomized clinical trial of supervised exercise therapy with or without feedback versus walking advice for intermittent claudication. J Vasc Surg. 2010;52:348–55. First citation in articleCrossref MedlineGoogle Scholar

  • 161 Guidon M, McGee H. Exercise-based interventions and health-related quality of life in intermittent claudication: a 20-year (1989–2008) review. Eur J Cardiovasc Prev Rehabil. 2010;17:140–54. First citation in articleCrossref MedlineGoogle Scholar

  • 162 Guidon M, McGee H. One-year effect of a supervised exercise programme on functional capacity and quality of life in peripheral arterial disease. Disabil Rehabil. 2013;35:397–404. First citation in articleCrossref MedlineGoogle Scholar

  • 163 Kakkos SK, Geroulakos G, Nicolaides AN. Improvement of the walking ability in intermittent claudication due to superficial femoral artery occlusion with supervised exercise and pneumatic foot and calf compression: a randomised controlled trial. Eur J Vasc Endovasc Surg. 2005;30:164–75. First citation in articleCrossref MedlineGoogle Scholar

  • 164 Savage P, Ricci MA, Lynn M, Gardner A, Knight S, Brochu M, et al. Effects of home versus supervised exercise for patients with intermittent claudication. J Cardiopulm Rehabil. 2001;21:152–7. First citation in articleCrossref MedlineGoogle Scholar

  • 165 Gardner AW, Montgomery PS, Wang M, Xu C. Predictors of health-related quality of life in patients with symptomatic peripheral artery disease. J Vasc Surg. 2018;68:1126–34. First citation in articleCrossref MedlineGoogle Scholar

  • 166 Erickson KI, Hillman C, Stillman CM, Ballard RM, Bloodgood B, Conroy DE, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc. 2019;51:1242–51. First citation in articleCrossref MedlineGoogle Scholar

  • 167 Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62. First citation in articleMedlineGoogle Scholar

  • 168 Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. 2013;3:403–28. First citation in articleCrossref MedlineGoogle Scholar

  • 169 Gommans LN, Saarloos R, Scheltinga MR, Houterman S, de Bie RA, Fokkenrood HJ, et al. Editor’s Choice – The effect of supervision on walking distance in patients with intermittent claudication: a meta-analysis. Eur J Vasc Endovasc Surg. 2014;48:169–84. First citation in articleCrossref MedlineGoogle Scholar

  • 170 Abaraogu UO, Dall PM, Seenan CA. The effect of structured patient education on physical activity in patients with peripheral arterial disease and intermittent claudication: a systematic review. Eur J Vasc Endovasc Surg. 2017;54:58–68. First citation in articleCrossref MedlineGoogle Scholar

  • 171 Bearne LM, Volkmer B, Peacock J, Sekhon M, Fisher G, Galea Holmes MN, et al. Effect of a home-based, walking exercise behavior change intervention vs usual care on walking in adults with peripheral artery disease: the MOSAIC randomized clinical trial. JAMA. 2022;327:1344–55. First citation in articleCrossref MedlineGoogle Scholar

  • 172 McDermott MM, Liu K, Guralnik JM, Criqui MH, Spring B, Tian L, et al. Home-based walking exercise intervention in peripheral artery disease: a randomized clinical trial. JAMA. 2013;310:57–65. First citation in articleCrossref MedlineGoogle Scholar

  • 173 McDermott MM, Spring B, Berger JS, Treat-Jacobson D, Conte MS, Creager MA, et al. Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease: the HONOR randomized clinical trial. JAMA. 2018;319:1665–76. First citation in articleCrossref MedlineGoogle Scholar

  • 174 Behrendt CA, Thomalla G, Rimmele DL, Petersen EL, Twerenbold R, Debus ES, et al. Prevalence of peripheral arterial disease, abdominal aortic aneurysm, and risk factors in the Hamburg City Health Study: a cross-sectional analysis. Eur J Vasc Endovasc Surg. 2023;65:590–8. First citation in articleCrossref MedlineGoogle Scholar

  • 175 Pabon M, Cheng S, Altin SE, Sethi SS, Nelson MD, Moreau KL, et al. Sex differences in peripheral artery disease. Circ Res. 2022;130:496–511. First citation in articleCrossref MedlineGoogle Scholar

  • 176 Behrendt CA, Sigvant B, Kuchenbecker J, Grima MJ, Schermerhorn M, Thomson IA, et al. Editor’s Choice – International variations and sex disparities in the treatment of peripheral arterial occlusive disease: a report from VASCUNET and the International Consortium of Vascular Registries. Eur J Vasc Endovasc Surg. 2020;60:873–80. First citation in articleCrossref MedlineGoogle Scholar

  • 177 Detriche G, Guedon A, Mohamedi N, Sellami O, Cheng C, Galloula A, et al. Women specific characteristics and 1-year outcome among patients hospitalized for peripheral artery disease: a monocentric cohort analysis in a tertiary center. Front Cardiovasc Med. 2022;9:824466. First citation in articleCrossref MedlineGoogle Scholar

  • 178 Heidemann F, Kuchenbecker J, Peters F, Kotov A, Marschall U, L' Hoest H, et al. A health insurance claims analysis on the effect of female sex on long-term outcomes after peripheral endovascular interventions for symptomatic peripheral arterial occlusive disease. J Vasc Surg. 2021;74:780–7. First citation in articleCrossref MedlineGoogle Scholar

  • 179 Hirsch AT, Allison MA, Gomes AS, Corriere MA, Duval S, Ershow AG, et al. A call to action: women and peripheral artery disease: a scientific statement from the American Heart Association. Circulation. 2012;125:1449–72. First citation in articleCrossref MedlineGoogle Scholar

  • 180 Kotov A, Heidemann F, Kuchenbecker J, Peters F, Marschall U, Acar L, et al. Sex disparities in long term outcomes after open surgery for chronic limb threatening ischaemia: a propensity score matched analysis of health insurance claims. Eur J Vasc Endovasc Surg. 2021;61:423–9. First citation in articleCrossref MedlineGoogle Scholar

  • 181 Singh N, Liu K, Tian L, Criqui MH, Guralnik JM, Ferrucci L, et al. Leg strength predicts mortality in men but not in women with peripheral arterial disease. J Vasc Surg. 2010;52:624–31. First citation in articleCrossref MedlineGoogle Scholar

  • 182 McDermott MM, Ferrucci L, Liu K, Guralnik JM, Tian L, Kibbe M, et al. Women with peripheral arterial disease experience faster functional decline than men with peripheral arterial disease. J Am Coll Cardiol. 2011;57:707–14. First citation in articleCrossref MedlineGoogle Scholar

  • 183 Gommans LN, Scheltinga MR, van Sambeek MR, Maas AH, Bendermacher BL, Teijink JA. Gender differences following supervised exercise therapy in patients with intermittent claudication. J Vasc Surg. 2015;62:681–8. First citation in articleCrossref MedlineGoogle Scholar

  • 184 Regensteiner JG, Bauer TA, Reusch JE, Brandenburg SL, Sippel JM, Vogelsong AM, et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. J Appl Physiol (1985). 1998;85:310–7. First citation in articleCrossref MedlineGoogle Scholar

  • 185 Lanzi S, Pousaz A, Calanca L, Mazzolai L. Sex-based differences in supervised exercise therapy outcomes for symptomatic peripheral artery disease. Vasc Med. 2023;28:147–9. First citation in articleCrossref MedlineGoogle Scholar

  • 186 Cetlin MD, Polonsky T, Ho K, Zhang D, Tian L, Zhao L, et al. Barriers to participation in supervised exercise therapy reported by people with peripheral artery disease. J Vasc Surg. 2023;77:506–14. First citation in articleCrossref MedlineGoogle Scholar

  • 187 Gupta T, Manning P, Kolte D, Smolderen KG, Stone N, Henry JG, et al. Exercise therapy referral and participation in patients with peripheral artery disease: insights from the PORTRAIT registry. Vasc Med. 2021;26:654–6. First citation in articleCrossref MedlineGoogle Scholar

  • 188 Harwood A, Smith G, Broadbent E, Cayton T, Carradice D, Chetter I. Access to supervised exercise services for peripheral vascular disease patients. Bull R Coll Surgeons Engl. 2017;99:207–11. First citation in articleCrossref MedlineGoogle Scholar

  • 189 Harwood AE, Smith GE, Cayton T, Broadbent E, Chetter IC. A systematic review of the uptake and adherence rates to supervised exercise programs in patients with intermittent claudication. Ann Vasc Surg. 2016;34:280–9. First citation in articleCrossref MedlineGoogle Scholar

  • 190 Li Y, Rother U, Rosenberg Y, Hinterseher I, Uhl C, Mylonas S, et al. A prospective survey study on the education and awareness about walking exercise amongst inpatients with symptomatic peripheral arterial disease in Germany. Vasa. 2023;52:218–23. First citation in articleLinkGoogle Scholar

  • 191 Rother U, Dorr G, Malyar N, Muller OJ, Steinbauer M, Ito W, et al. How German vascular surgeons and angiologists judge walking exercise for patients with PAD. Vasa. 2023;52:224–9. First citation in articleLinkGoogle Scholar

  • 192 Saxon JT, Safley DM, Mena-Hurtado C, Heyligers J, Fitridge R, Shishehbor M, et al. Adherence to guideline-recommended therapy-including supervised exercise therapy referral-across peripheral artery disease specialty clinics: insights from the International PORTRAIT Registry. J Am Heart Assoc. 2020;9:e012541. First citation in articleCrossref MedlineGoogle Scholar

  • 193 Lanzi S, Belch J, Brodmann M, Madaric J, Bura-Riviere A, Visona A, et al. Supervised exercise training in patients with lower extremity peripheral artery disease. Vasa. 2022;51:267–74. First citation in articleLinkGoogle Scholar

  • 194 Parodi JC, Fernandez S, Moscovich F, Pulmaria C. Hydration may reverse most symptoms of lower extremity intermittent claudication or rest pain. J Vasc Surg. 2020;72:1459–63. First citation in articleCrossref MedlineGoogle Scholar

  • 195 Mannarino E, Pasqualini L, Innocente S, Scricciolo V, Rignanese A, Ciuffetti G. Physical training and antiplatelet treatment in stage II peripheral arterial occlusive disease: alone or combined? Angiology. 1991;42:513–21. First citation in articleCrossref MedlineGoogle Scholar

  • 196 Hobbs SD, Marshall T, Fegan C, Adam DJ, Bradbury AW. The effect of supervised exercise and cilostazol on coagulation and fibrinolysis in intermittent claudication: a randomized controlled trial. J Vasc Surg. 2007;45:65–70.; discussion 70. First citation in articleCrossref MedlineGoogle Scholar