Skip to main content
Themenschwerpunkt

Glücksspiel im Gehirn: Neurobiologische Grundlagen pathologischen Glücksspielens

Published Online:https://doi.org/10.1024/0939-5911.a000121

Hintergrund: Pathologisches Glücksspielen (PG) wird in den internationalen Klassifikationssystemen bislang als Impulskontrollstörung klassifiziert. Erst in jüngster Zeit wird aufgrund der Ähnlichkeiten in Phänomenologie, Ätiologie, Verlauf sowie genetischen und neurobiologischen Faktoren mit der Substanzabhängigkeit eine Einordnung des PGs als Verhaltenssucht diskutiert. Insbesondere neurobiologische und neuropsychologische Befunde haben zu dieser veränderten Sichtweise beigetragen. Methode: Im vorliegenden Beitrag werden Befunde zu neurobiologischen Grundlagen PGs vorgestellt. Der Schwerpunkt liegt auf neurokognitiven Prozessen wie Belohnungs- und Bestrafungsverarbeitung, Cue-Reaktivität, Impulsivität und Entscheidungsfindung. Die Befunde werden im Hinblick auf Ähnlichkeiten und Unterschiede PGs zur Substanzabhängigkeit diskutiert. Ergebnisse: Ähnlich wie bei der Substanzabhängigkeit zeigt sich auch bei pathologischen Spielern Veränderungen mesolimbischer-präfrontaler Netzwerke, die sich in einer verminderten Belohnungs- und Bestrafungssensitivität, Impulshemmung und einer erhöhten Cue-Reaktivität auf glücksspielassoziierte Reize äußern können. Jedoch sind die Befunde teilweise nicht eindeutig und eine Vielzahl der Studien unterliegt methodischen Einschränkungen. Schlussfolgerungen: Bisherige Befunde stützen die Einordnung pathologischen Spielverhaltens als Verhaltenssucht.


Gambling in the Brain: Underlying Neurobiological Mechanisms of Pathological Gambling

Background: Pathological gambling is currently classified as an impulse control disorder in the international classification systems. Recently, pathological gambling is increasingly regarded as non-substance or behavioral addiction because of its phenomenological, etiological, genetic and neurobiological resemblance with substance dependence. Especially findings from neuropsychological and imaging studies have supported to view pathological gambling as an addiction. Method: This article reviews findings on neurobiological mechanisms of pathological gambling focusing on neurocognitive processes such as reward and punishment processing, cue-reactivity, impulsivity and decision-making. The findings are discussed with respect to resemblances and differences with substance dependence. Results: Changes in the function of mesolimbic-prefrontal circuits associated with blunted reward and punishment sensitivity, impulse control and increased cue-reactivity have been found in pathological gambling, which are similar to those in substance dependence. However, some findings are ambiguous and most of the studies have methodological limitations. Conclusions: Current findings generally support the classification of pathological gambling as a behavioral addiction.

Literatur

  • Albrecht, U. & Grüsser, S. M. (2007). Rien ne va plus – Wenn Glücksspiele leiden schaffen. Bern: Huber. First citation in articleGoogle Scholar

  • Alessi, S. M. & Petry, N. M. (2003). Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioral Processes, 64, 345 – 354. First citation in articleCrossrefGoogle Scholar

  • Aron, A. R. (2007). The neural basis of inhibition in cognitive control. Neuroscientist, 13, 214 – 228. First citation in articleCrossrefGoogle Scholar

  • Bergh, C. , Eklund, T. , Sodersten, P. & Nordin, C. (1997). Altered dopamine function in pathological gambling. Psychological Medicine, 27, 473 – 475. First citation in articleCrossrefGoogle Scholar

  • Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences, 29, 109 – 125. First citation in articleCrossrefGoogle Scholar

  • Blanco, C. , Petkova, E. , Ibanez, A. & Saiz-Ruiz, J. (2002). A pilot placebo-controlled study of fluvoxamine for pathological gambling. Annuals of Clinical Psychiatry, 14, 9 – 15. First citation in articleCrossrefGoogle Scholar

  • Blaszczynski, A. & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97, 487 – 499. First citation in articleCrossrefGoogle Scholar

  • Bolla, K. , Ernst, M. , Kiehl, K. , Mouratidis, M. , Eldreth, D. , Contoreggi, C. et al. (2004). Prefrontal cortical dysfunction in abstinent cocaine abusers. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 456 – 464. First citation in articleCrossrefGoogle Scholar

  • Böning, J. (2001). Neurobiology of an addiction memory. Journal of Neurotransmission, 108, 755 – 765. First citation in articleGoogle Scholar

  • Brand, M. , Kalbe, E. , Labudda, K. , Fujiwara, E. , Kessler, J. & Markowitsch, H. J. (2005). Decision-making impairments in patients with pathological gambling. Psychiatry Research, 133, 91 – 99. First citation in articleCrossrefGoogle Scholar

  • Brand, M. , Recknor, E. C. , Grabenhorst, F. & Bechara, A. (2007). Decisions under ambiguity and decisions under risk: correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. Journal of Clinical and Experimental Neuropsychology, 29, 86 – 99. First citation in articleCrossrefGoogle Scholar

  • Braus, D. F. , Wrase, J. , Grüsser, S. , Hermann, D. , Ruf, M. , Flor, H. et al. (2001). Alcohol-associated stimuli activate the ventral striatum in abstinent alcoholics. Journal of Neural Transmission, 108, 887 – 894. First citation in articleCrossrefGoogle Scholar

  • Brewer, J. A. , Grant, J. E. & Potenza, M. N. (2008). The treatment of pathological gambling. Addictive Disorders & Their Treatment, 7, 1 – 14. First citation in articleCrossrefGoogle Scholar

  • Brown, J. W. & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulated cortex. Cognitive, Affective, & Behavioral Neuroscience, 7, 266 – 277. First citation in articleCrossrefGoogle Scholar

  • Carter, B. L. & Tiffany, S. T. (1999). Cue-reactivity and the future of addiction research. Addiction, 94, 349 – 351. First citation in articleCrossrefGoogle Scholar

  • Carter, C. S. & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367 – 379. First citation in articleCrossrefGoogle Scholar

  • Cavedini, P. , Riboldi, G. , Keller, R. , D’Annucci, A. & Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 51, 334 – 341. First citation in articleCrossrefGoogle Scholar

  • Chamberlain, S. R. & Sahakian, B. J. (2007). The neuropsychiatry of impulsivity. Current Opinion in Psychiatry, 20, 255 – 261. First citation in articleCrossrefGoogle Scholar

  • Chiu, Y. C. & Lin, C. H. (2007). Is deck C an advantageous deck in the Iowa Gambling Task? Behavioral and Brain Functions, 3, 37. First citation in articleCrossrefGoogle Scholar

  • Chong, T. T. , Williams, M. A. , Cunnington, R. & Mattingley, J. B. (2008). Selective attention modulates inferior frontal gyrus activity during action observation. Neuroimage, 40, 298 – 307. First citation in articleCrossrefGoogle Scholar

  • Comings, D. E. , Gade-Andavolu, R. , Gonzalez, N. , Wu, S. , Muhleman, D. , Chen, C. et al. (2001). The additive effect of neurotransmitter genes in pathological gambling. Clinical Genetics, 60, 107 – 116. First citation in articleCrossrefGoogle Scholar

  • Clark, L. , Lawrence, A. J. , Astley-Jones, F. & Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron, 61, 481 – 490. First citation in articleCrossrefGoogle Scholar

  • Crockford, D. N. , Goodyear, B. , Edwards, J. , Quickfall, J. & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58, 787 – 795. First citation in articleCrossrefGoogle Scholar

  • de Greck, M. , Enzi, B. , Prösch, U. , Gantman, A. , Tempelmann, C. & Northoff, G. (2010). Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Human Brain Mapping, 31, 1802 – 1812. First citation in articleGoogle Scholar

  • de Ruiter, M. B. , Veltman, D. J. , Goudriaan, A. E. , Oosterlaan, J. , Sjoerds, Z. & van den Brink, W. (2009). Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology, 4, 1027 – 1038. First citation in articleCrossrefGoogle Scholar

  • DeCaria, C. M. , Begaz, T. & Hollander, E. (1998). Serotonergic and noradrenergic function in pathological gambling. CNS Spectrum, 3, 38 – 47. First citation in articleCrossrefGoogle Scholar

  • Dixon, M. R. , Marley, J. & Jacobs, E. A. (2003). Delay discounting by pathological gamblers. Journal of Applied and Behavioral Anals, 36, 449 – 458. First citation in articleCrossrefGoogle Scholar

  • Eisen, S. A. , Slutske, W. S. , Lyons, M. J. , Lassman, J. , Xian, H. , Toomey, R. et al. (2001). The genetics of pathological gambling. Seminars in Clinical Neuropsychiatry, 6, 195 – 204. First citation in articleCrossrefGoogle Scholar

  • Everitt, B. J. , Belin, D. , Economidou, D. , Pelloux, Y. , Dalley, J. W. & Robbins, T.W. (2008). Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3125 – 3135. First citation in articleCrossrefGoogle Scholar

  • Everitt, B. J. & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8, 1481 – 1489. First citation in articleCrossrefGoogle Scholar

  • Forbush, K. T. , Shaw, M. , Graeber, M. A. , Hovick, L. , Meyer, V. J. , Moser, D. J. et al. (2008). Neuropsychological characteristics and personality traits in pathological gambling. CNS Spectrum, 13, 306 – 315. First citation in articleCrossrefGoogle Scholar

  • Franken, I. H. , Booij, J. & van den Brink, W. (2005). The role of dopamine in human addiction: from reward to motivated attention. European Journal of Pharmacology, 526, 199 – 206. First citation in articleCrossrefGoogle Scholar

  • Fuentes, D. , Tavares, H. , Artes, R. & Gorenstein, C. (2006). Self-reported and neuropsychological measures of impulsivity in pathological gambling. Journal of the International Neuropsychological Society, 12, 907 – 912. First citation in articleCrossrefGoogle Scholar

  • George, M. S. , Anton, R. F. , Bloomer, C. , Teneback, C. , Drobes, D. J. , Lorberbaum, J. P. et al. (2001). Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Archives of General Psychiatry, 58, 345 – 352. First citation in articleCrossrefGoogle Scholar

  • Goldstein, R. Z. & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642 – 1652. First citation in articleCrossrefGoogle Scholar

  • Goldstein, R. Z. , Tomasi, D. , Rajaram, S. , Cottone, L. A. , Zhang, L. , Maloney, T. et al. (2007). Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience, 144, 1153 – 1159. First citation in articleCrossrefGoogle Scholar

  • Goudriaan, A. E. , de Ruiter, M. B. , van den Brink, W. , Oosterlaan, J. & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addiction Biology, 15, 491 – 503. First citation in articleCrossrefGoogle Scholar

  • Goudriaan, A. E. , Oosterlaan, J. , de Beurs, E. & van den Brink, W. (2006). Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction, 101, 534 – 547. First citation in articleCrossrefGoogle Scholar

  • Goudriaan, A. E. , Oosterlaan, J. , de Beurs, E. & van den Brink, W. (2005). Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Research. Cognitive Brain Research, 23, 137 – 151. First citation in articleCrossrefGoogle Scholar

  • Grant, J. E. & Potenza, M. N. (2006). Escitalopram treatment of pathological gambling with co-occurring anxiety: an open-label pilot study with double-blind discontinuation. International Clinical Psychopharmacology, 21, 203 – 209. First citation in articleCrossrefGoogle Scholar

  • Grant, J. E. , Kim, S. W. , Hollander, E. & Potenza, M. N. (2008). Predicting response to opiate antagonists and placebo in the treatment of pathological gambling. Psychopharmacology, 200, 521 – 527. First citation in articleCrossrefGoogle Scholar

  • Grant, J. E. , Kim, S. W. , Potenza, M. N. , Blanco, C. , Ibanez, A. , Stevens, L. C. et al. (2003). Paroxetine treatment of pathological gambling: a multi-center randomized controlled trial. International Clinical Psychopharmacology, 18, 243 – 249. First citation in articleCrossrefGoogle Scholar

  • Grant, J. E. , Potenza, M. N. , Hollander, E. , Cunningham-Williams, R. M. , Numinen, T. , Smits, G. et al. (2006). Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. American Journal of Psychiatry, 163, 303 – 312. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S. M. & Thalemann, C. N. (2006). Verhaltenssucht: Diagnostik, Therapie, Forschung. Bern: Huber. First citation in articleGoogle Scholar

  • Grüsser, S. M. , Wrase, J. , Klein, S. , Hermann, D. , Smolka, M. N. , Ruf, M. et al. (2004). Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology, 175, 296 – 302. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S. M. , Heinz, A. & Flor, H. (2000). Standardized stimuli to assess drug craving and drug memory in addicts. Journal of Neural Transmission, 107, 715 – 720. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S. M. , Plöntzke, B. & Albrecht, U. (2005). Pathologisches Glücksspiel – eine empirische Untersuchung des Verlangens nach einem stoffungebundenen Suchtmittel. Nervenarzt, 76, 592 – 596. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S. M. , Poppelreuter, S. , Heinz, A. , Albrecht, U. & Sass, H. (2007). Verhaltenssucht – eine eigenständige diagnostische Einheit? Nervenarzt, 78, 997 – 1002. First citation in articleCrossrefGoogle Scholar

  • Hampton, A. N. & O’doherty, J. P. (2007). Decoding the neural substrates of rewardrelated decision making with functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 104, 1377 – 1382. First citation in articleCrossrefGoogle Scholar

  • Hampton, A. N. , Adolphs, R. , Tyszka, M. J. & O’doherty, J. P. (2007). Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron, 55, 545 – 555. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. & Batra, A. (2003). Neurobiologie der Alkohol- und Nikotinabhängigkeit. Stuttgart: Kohlhammer. First citation in articleGoogle Scholar

  • Heinz, A. (2000). Das dopaminerge Verstärkungsystem: Funktion, Interaktion mit anderen Neurotransmittersystemen und psychopathologische Korrelate. Darmstadt: Steinkopff. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Grace, A. A. & Beck, A. (2009). The intricacies of dopamine neuron modulation. Biological Psychiatry, 65, 101 – 102. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Siessmeier, T. , Wrase, J. , Hermann, D. , Klein, S. , Grüsser, S. M. et al. (2004). Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161, 1783 – 1789. First citation in articleCrossrefGoogle Scholar

  • Heinz, A. , Wrase, J. , Kahnt, T. , Beck, A. , Bromand, Z. , Grüsser, S. M. et al. (2007). Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcoholism: Clinical and Experimental Research, 31, 1138 – 1147. First citation in articleCrossrefGoogle Scholar

  • Hester, R. & Garavan, H. (2004). Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. Journal of Neuroscience, 24, 11017 – 11022. First citation in articleCrossrefGoogle Scholar

  • Hewig, J. , Kretschmer, N. , Trippe, R. H. , Hecht, H. , Coles, M. G. , Holroyd, C. B. et al. (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67, 781 – 783. First citation in articleCrossrefGoogle Scholar

  • Hoffman, W. F. , Moore, M. , Templin, R. , McFarland, B. , Hitzemann, R. J. & Mitchell, S. H. (2006). Neuropsychological function and delay discounting in methamphetamine-dependent individuals. Psychopharmacology, 188, 162 – 170. First citation in articleCrossrefGoogle Scholar

  • Holden, C. (2010). Behavioral Addictions Debut in Proposed DSM-V. Science, 327, 935. First citation in articleCrossrefGoogle Scholar

  • Hollander, E. , DeCaria, C. M. , Finkell, J. N. , Begaz, T. , Wong, C. M. & Cartwright, C. (2000). A randomized double-blind fluvoxamine/placebo crossover trial in pathological gambling. Biological Psychiatry, 47, 813 – 817. First citation in articleCrossrefGoogle Scholar

  • Kalechstein, A. D. , Fong, T. , Rosenthal, R. J. , Davis, A. , Vanyo, H. & Newton, T. F. (2007). Pathological gamblers demonstrate frontal lobe impairment consistent with that of methamphetamine-dependent individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 19, 298 – 303. First citation in articleGoogle Scholar

  • Kalivas, P. W. & Volkow, N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. American Journal of Psychiatry, 162, 1403 – 1413. First citation in articleCrossrefGoogle Scholar

  • Kertzman, S. , Lowengrub, K. , Aizer, A. , Nahum, Z. B. , Kotler, M. & Dannon, P. N. (2006). Stroop performance in pathological gamblers. Psychiatry Research, 142, 1 – 10. First citation in articleCrossrefGoogle Scholar

  • Kertzman, S. , Lowengrub, K. , Aizer, A. , Vainder, M. , Kotler, M. & Dannon, P. N. (2008). Go-no-go performance in pathological gamblers. Psychiatry Research, 161, 1 – 10. First citation in articleCrossrefGoogle Scholar

  • Kim, S. W. , Grant, J. E. , Adson, D. E. & Shin, Y. C. (2001). Double-blind naltrexone and placebo comparison study in the treatment of pathological gambling. Biological Psychiatry, 49, 914 – 921. First citation in articleCrossrefGoogle Scholar

  • Kim, S. W. , Grant, J. E. , Adson, D. E. , Shin, Y. C. & Zaninelli, R. (2002). A double-blind, placebo-controlled study of the efficacy and safety of paroxetine in the treatment of pathological gambling disorder. Journal of Clinical Psychiatry, 63, 501 – 507. First citation in articleCrossrefGoogle Scholar

  • Kirby, K. N. & Petry, N. M. (2004). Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction, 99, 461 – 471. First citation in articleCrossrefGoogle Scholar

  • Knutson, B. & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18, 411 – 417. First citation in articleGoogle Scholar

  • Knutson, B. , Fong, G. W. , Bennett, S. M. , Adams, C. M. & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage, 18, 263 – 272. First citation in articleCrossrefGoogle Scholar

  • Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making. Neuroscience and Biobehavioral Reviews, 26, 631 – 664. First citation in articleCrossrefGoogle Scholar

  • Krüger, F. , Fischer, R. , Heinecke, A. & Hagendorf, H. (2007). An fMRI investigation into the neural mechanisms of spatial attentional selection in a location-based negative priming task. Brain Research, 1174, 110 – 119. First citation in articleCrossrefGoogle Scholar

  • Lakey, C. E. , Goodie, A. S. & Campbell, W. K. (2007). Frequent card playing and pathological gambling: the utility of the Georgia Gambling Task and Iowa Gambling Task for predicting pathology. Journal of Gambling Studies, 23, 285 – 297. First citation in articleCrossrefGoogle Scholar

  • Leiserson, V. & Pihl, R. O. (2007). Reward-sensitivity, inhibition of reward-seeking, and dorsolateral prefrontal working memory function in problem gamblers not in treatment. Journal of Gambling Studies, 23, 435 – 455. First citation in articleCrossrefGoogle Scholar

  • Lin, C. H. , Chiu, Y. C. , Lee, P. L. & Hsieh, J. C. (2007). Is deck B a disadvantageous deck in the Iowa Gambling Task? Behavioral and Brain Functions, 3, 16. First citation in articleCrossrefGoogle Scholar

  • Linnet, J. , Rojskjaer, S. , Nygaard, J. & Maher, B. A. (2006). Episodic chasing in pathological gamblers using the Iowa gambling task. Scandinavian Journal of Psychology, 47, 43 – 49. First citation in articleCrossrefGoogle Scholar

  • Linnoila, M. , Virkunnen, M. , Scheinen, M. , Nuutila, A. , Rimon, R. & Goodwin, F. (1983). Low cerebrospinal fluid 5-hydroxy indolacetic acid concentrations differentiates impulsive from non impulsive violent behavior. Life Science, 33, 2609 – 2614. First citation in articleCrossrefGoogle Scholar

  • Lisman, J. E. & Grace, A. A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron, 46, 703 – 713. First citation in articleGoogle Scholar

  • MacKillop, J. , Anderson, E. J. , Castelda, B. A. , Mattson, R. E. & Donovick, P. J. (2006). Divergent validity of measures of cognitive distortions, impulsivity, and time perspective in pathological gambling. Journal of Gambling Studies, 22, 339 – 354. First citation in articleCrossrefGoogle Scholar

  • Marazziti, D. , Catena, D. M. , Conversano, C. , Consoli, G. , Vivarelli, L. , Mungai, F. et al. (2008). Executive function abnormalities in pathological gamblers. Clinical Practice and Epidemiology in Mental Health, 4, 7. First citation in articleCrossrefGoogle Scholar

  • Meyer, G. , Hauffa, B. P. , Schedlowski, M. , Pawluk, C. , Stadler, M. A. & Exton, M. S. (2000). Casino gambling increases heart rate and salivary cortisol in regular gamblers. Biological Psychiatry, 48, 948 – 953. First citation in articleCrossrefGoogle Scholar

  • Meyer, G. , Schwertfeger, J. , Exton, M. S. , Janssen, O. E. , Knapp, W. , Stadler, M. A. et al. (2004). Neuroendocrine response to casino gambling in problem gamblers. Psychoneuroendocrinology 29, 1272 – 1280. First citation in articleCrossrefGoogle Scholar

  • Miedl, S. F. , Fehr, T. , Meyer, G. & Hermann, M. (2010). Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Research: Neuroimaging, 181, 165 – 173. First citation in articleCrossrefGoogle Scholar

  • Nestler, E. J. (2004). Molecular mechanisms of drug addiction. Neuropharmacology, 47, 24 – 32. First citation in articleCrossrefGoogle Scholar

  • Nordin, C. & Eklundh, T. (1999). Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS Spectrum, 4, 25 – 33. First citation in articleCrossrefGoogle Scholar

  • Pallanti, S. , Bernardi, S. , Quercioli, L. , DeCaria, C. & Hollander, E. (2006). Serotonin dysfunction in pathological gamblers: increased prolactin response to oral m-CPP versus placebo. CNS Spectrum, 11, 955 – 964. First citation in articleGoogle Scholar

  • Pallesen, S. , Molde, H. , Arnestad, H. M. , Laberg, J. C. , Skutle, A. , Iversen, E. et al. (2007). Outcome of pharmacological treatments of pathological gambling: a review and meta-analysis. Journal of Clinical Psychopharmacology, 27, 357 – 364. First citation in articleCrossrefGoogle Scholar

  • Petry, N. M. (2001a). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482 – 487. First citation in articleCrossrefGoogle Scholar

  • Petry, N. M. (2001b). Substance abuse, pathological gambling, and impulsiveness. Drug and Alcohol Dependence, 63, 29 – 38. First citation in articleCrossrefGoogle Scholar

  • Petry, N. M. (2006). Should the scope of addictive behaviors be broadened to include pathological gambling? Addiction, 101 (Suppl. 1), 152 – 160. First citation in articleGoogle Scholar

  • Petry, N. M. & Casarella, T. (1999). Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug and Alcohol Dependence, 56, 25 – 32. First citation in articleCrossrefGoogle Scholar

  • Petry, N. M. (2001). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482 – 487. First citation in articleCrossrefGoogle Scholar

  • Potenza, M. N. (2006). Should addictive disorders include non-ubstance-related conditions? Addiction, 101 (Suppl. 1), 142 – 151. First citation in articleGoogle Scholar

  • Potenza, M. N. (2008). The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philosophical transactions of the Royal Society of London. Series B: Biological sciences, 363, 3181 – 3189. First citation in articleCrossrefGoogle Scholar

  • Potenza, M. N. , Leung, H. C. , Blumberg, H. P. , Peterson, B. S. , Fulbright, R. K. , Lacadie, C. M. et al. (2003). An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. American Journal of Psychiatry, 160, 1990 – 1994. First citation in articleCrossrefGoogle Scholar

  • Potenza, M. N. , Steinberg, M. A. , Skudlarski, P. , Fulbright, R. K. , Lacadie, C. M. , Wilber, M. K. et al. (2003). Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Archives of General Psychiatry, 60, 828 – 836. First citation in articleCrossrefGoogle Scholar

  • Potenza, M. N. , Voon, V. & Weintraub, D. (2007). Drug insight: impulse control disorders and dopamine therapies in Parkinson’s disease. Nature Clinical Practice Neuroscience, 3, 664 – 672. First citation in articleCrossrefGoogle Scholar

  • Redish, A. D. , Jensen, S. , Johnson, A. & Kurth-Nelson, Z. (2007). Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychological Review, 114, 784 – 805. First citation in articleCrossrefGoogle Scholar

  • Regard, M. , Knoch, D. , Gutling, E. & Landis, T. (2003). Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers. Cognitive and Behavioral Neurology, 16, 47 – 53. First citation in articleCrossrefGoogle Scholar

  • Reuter, J. , Raedler, T. , Rose, M. , Hand, I. , Glascher, J. & Buchel, C. (2005). Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nature Neuroscience, 8, 147 – 148. First citation in articleCrossrefGoogle Scholar

  • Robbins, S. J. & Ehrman, R. N. (2004). The role of attentional bias in substance abuse. Behavioral and Cognitive Neuroscience Reviews, 3, 243 – 260. First citation in articleCrossrefGoogle Scholar

  • Roberts, K. L. & Hall, D. A. (2008). Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory Stroop tasks. Journal of Cognitive Neuroscience, 20, 1063 – 1078. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. E. & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London. Series B: Biological Science, 363, 3137 – 3146. First citation in articleCrossrefGoogle Scholar

  • Roca, M. , Torralva, T. , Lopez, P. , Cetkovich, M. , Clark, L. & Manes, F. (2008). Executive functions in pathologic gamblers selected in an ecologic setting. Cognitive and Behavioral Neurology, 21, 1 – 4. First citation in articleCrossrefGoogle Scholar

  • Rodriguez-Jimenez, R. , Avila, C. , Jimenez-Arriero, M. A. , Ponce, G. , Monasor, R. , Jimenez, M. et al. (2006). Impulsivity and sustained attention in pathological gamblers: influence of childhood ADHD history. Journal of Gambling Studies, 22, 451 – 461. First citation in articleCrossrefGoogle Scholar

  • Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain & Cognition, 55, 11 – 29. First citation in articleCrossrefGoogle Scholar

  • Roy, A. , Adinoof, B. , Roehrich L., Lamparski D. , Custer R., Lorenz V. et al. (1988). Pathological gambling: a psychobiological study. Archives of General Psychiatry, 45, 369 – 373. First citation in articleCrossrefGoogle Scholar

  • Roy, A. , de Jong, J. & Linnoila, M. (1989). Extraversion in pathological gamblers: correlates with indexes of noradrenergic function. Archives of General Psychiatry, 46, 679 – 681. First citation in articleCrossrefGoogle Scholar

  • Rugle, L. & Melamed, L. (1993). Neuropsychological assessment of attention problems in pathological gamblers. Journal of Nervous and Mental Disease, 181, 107 – 112. First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30, 203 – 210. First citation in articleCrossrefGoogle Scholar

  • Sharpe, L. (2002). A reformulated cognitive-behavioral model of problem gambling. A biopsychosocial perspective. Clinical Psychology Review, 22, 1 – 25. First citation in articleCrossrefGoogle Scholar

  • Shinohara, K. , Yanagisawa, A. , Kagota, Y. , Gomi, A. , Nemoto, K. , Moriya, E. et al. (1999). Physiological changes in Pachinko players; betaendorphin, catecholamines, immune system substances and heart rate. Applied Human Science, 18, 37 – 42. First citation in articleCrossrefGoogle Scholar

  • Spanagel, R. , Herz, A. & Shippenberg, T. S. 1992 Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proceedings of the National Academy of Science, 89, 2046 – 2050. First citation in articleGoogle Scholar

  • Tanabe, J. , Thompson, L. , Claus, E. , Dalwani, M. , Hutchison, K. & Banich, M. T. (2007). Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Human Brain Mapping, 28, 1276 – 1286. First citation in articleCrossrefGoogle Scholar

  • Tapert, S. F. , Brown, G. G. , Baratta, M. V. & Brown, S. A. (2004). fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addictive Behaviors, 29, 33 – 50. First citation in articleCrossrefGoogle Scholar

  • Toneatto, T. , Blitz-Miller, T. , Calderwood, K. , Dragonetti, R. & Tsanos, A. (1997). Cognitive distortions in heavy gambling. Journal of Gambling Studies, 13, 253 – 266. First citation in articleCrossrefGoogle Scholar

  • van Holst, R. J. , van den Brink, W. , Veltman, D. J. & Goudriaan A. E., (2010). Why gamblers fail to win: A review of cognitive and neuroimaging findings in pathological gambling. Neuroscience and Biobehavioral Reviews, 34, 87 – 107. First citation in articleCrossrefGoogle Scholar

  • Verdejo-Garcia, A. , Lawrence, A. J. & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience and Biobehavioral Reviews, 32, 777 – 810. First citation in articleCrossrefGoogle Scholar

  • Vitaro, F. , Arseneault, L. & Tremblay, R. E. (1999). Impulsivity predicts problem gambling in low SES adolescent males. Addiction, 94, 565 – 575. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Fowler, J. S. & Wang, G. J. (2004). The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology, 47 (Suppl. 1), 3 – 13. First citation in articleGoogle Scholar

  • Volkow, N. D. , Fowler, J. S. , Wang, G. J. & Goldstein, R. Z. (2002). Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiology of Learning and Memory, 78, 610 – 624. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Fowler, J. S. , Wang, G. J. , Baler, R. & Telang, F. (2008). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56 (Suppl. 1), 3 – 8. First citation in articleGoogle Scholar

  • Voon, V. , Thomsen, T. , Miyasaki, J. M. , de Souza, M. , Shafro, A. , Fox, S. H. et al. (2007). Factors associated with dopaminergic drug-related pathological gambling in Parkinson’s disease. Archives of Neurology, 64, 212 – 216. First citation in articleCrossrefGoogle Scholar

  • Weintraub, D. , Siderow, A. , Potenza, M. N. , Goveas, J. , Morales, K. , Duda, J. et al. (2006). Dopamine agonist use is associated with impulse control disorders in Parkinson’s disease. Archives of Neurology, 63, 969 – 973. First citation in articleCrossrefGoogle Scholar

  • Wölfling, K. , Bühler, M. , Leménager, T. , Mörsen, C. & Mann, K. (2009). Glücksspiel und Internetsucht: Review und Forschungsagenda. Nervenarzt, 80, 1030 – 1039. First citation in articleCrossrefGoogle Scholar

  • Wölfling, K. , Mörsen, C. P. , Duven, E. , Albrecht, U. , Grüsser, S. M. & Flor, H. (2011). To gamble or not to gamble: At risk for craving and relapse – learned motivated attention in pathological gambling. Biological Psychology, 87, 275 – 281. First citation in articleCrossrefGoogle Scholar

  • World Health Organization (1992). International Statistical Classification of Diseases and Related Health Problems (10th ed.). Genf: WHO. First citation in articleGoogle Scholar

  • Wrase, J. , Grüsser, S. M. , Klein, S. , Diener, C. , Hermann, D. , Flor, H. et al. (2002). Development of alcohol-associated cues and cue-induced brain activation in alcoholics. European Psychiatry, 17, 287 – 291. First citation in articleCrossrefGoogle Scholar

  • Wrase, J. , Schlagenhauf, F. , Kienast, T. , Wüstenberg, T. , Bermpohl, F. , Kahnt, T. et al. (2007). Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage, 35, 787 – 794. First citation in articleCrossrefGoogle Scholar

  • Yacubian, J. , Glascher, J. , Schroeder, K. , Sommer, T. , Braus, D. F. & Buchel, C. (2006). Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. Journal of Neuroscience, 26, 9530 – 9537. First citation in articleCrossrefGoogle Scholar

  • Yacubian, J. , Sommer, T. , Schröder, K. , Glascher, J. , Braus, D. F. & Buchel, C. (2007). Subregions of the ventral striatum show preferential coding of reward magnitude and probability. Neuroimage, 38, 557 – 563. First citation in articleCrossrefGoogle Scholar

  • Yechiam, E. , Busemeyer, J. R. , Stout, J. C. & Bechara, A. (2005). Using cognitive models to map relations between neuropsychological disorders and human decisionmaking deficits. Psychological Science, 16, 973 – 978. First citation in articleCrossrefGoogle Scholar

  • Zack, M. & Poulos, C. X. (2004). Amphetamine primes motivation to gamble and gambling-related semantic networks in problem gamblers. Neuropsychopharmacology, 29, 195 – 207. First citation in articleCrossrefGoogle Scholar

  • Zack, M. & Poulos, C. X. (2007). A D2 antagonist enhances the rewarding and priming effects of a gambling episode in pathological gamblers. Neuropsychopharmacology, 32, 1678 – 1686. First citation in articleCrossrefGoogle Scholar