Skip to main content
Originalartikel

Untersuchung der Simulationssensibilität des Alertness-Tests der Testbatterie zur Aufmerksamkeitsprüfung (TAP)

Published Online:https://doi.org/10.1024/1016-264X/a000125

Zur Sicherung valider Testprofile in der neuropsychologischen Begutachtung ist die Beurteilung der Plausibilität vorgebrachter Defizite unerlässlich. In der vorliegenden Studie wurde die Sensibilität für Täuschungsverhalten des Alertness-Tests der Testbatterie zur Aufmerksamkeitsprüfung (TAP) untersucht. Der Vergleich der Testleistungen von 17 Probanden unter (i) normaler Anstrengungsbereitschaft, (ii) Simulationsvorsatz und (iii) Simulation mit vorheriger Information über glaubhafte Täuschungsstrategien zeigte, dass informierte Probanden geringere Reaktionszeiten und Standardabweichungen als unter der naiven Simulationsbedingung aufweisen, aber weiterhin langsamere und inkonsistentere Reaktionen als unter optimaler Anstrengungsbereitschaft zeigen. Selbst unter willentlicher Anstrengung waren sie nicht fähig, normgerechte Standardabweichungen ihrer simulierten Minderleistung zu erreichen. Demnach deuten konstante Reaktionszeiten auf authentisches Leistungsverhalten hin. Im Vergleich zu Testdaten von Patienten zeigte sich, dass die Simulationsabsicht informierter Probanden mittels einzelner Testparameter nicht identifiziert werden kann. Unter Berücksichtigung mehrerer Testparameter ist es allerdings auch bei Kenntnis glaubhafter Täuschungsstrategien möglich, eine valide Beurteilung der Plausibilität der individuellen Leistung zu gewährleisten.


Detecting Simulation of Attention Deficits using the Alertness test of the Test of Attentional Performance (TAP)

In order to guarantee the validity of neuropsychological test profiles, it is essential to assess the plausibility of reported deficits. The present study aimed to examine the influence of malingering on the Alertness test of the Test of Attentional Performance (TAP). For that purpose we tested 17 healthy subjects under (i) optimal effort, (ii) simulation and (iii) coached simulation conditions. In result, coached simulants showed shorter and less variable reaction times than naïve simulants but still slower and more variable reactions than under optimal effort. Thus, even with detailed knowledge about plausible simulation strategies, participants were not able to fake consistent slower reactions. Consequently, even though this cannot hold true for the reverse, constant reaction times in an alertness test can indicate optimal behavioral effort. In comparison to patients, coached simulation can no longer be identified via single test parameters. However, under consideration of multiple test parameters it is still possible to assess the plausibility of test behavior even in the presence of detailed knowledge about plausible simulation strategies.

Literatur

  • Archibald, C. J. & Fisk, J. D. (2000). Information Processing Efficiency in Patients with Multiple Sclerosis. Journal of Clinical and Experimental Neuropsychology, 22, 686 – 701. First citation in articleCrossrefGoogle Scholar

  • Aronoff, G. M., Mandel, S., Genovese, E., Maitz, E. A., Dorto, A. J., Klimek, E. H. et al. (2007). Evaluating Malingering in Contested Injury or Illness. Pain Practice, 7, 178 – 204. First citation in articleCrossrefGoogle Scholar

  • Ballesteros, S., Mayas, J. & Reales, J. M. (2013). Cognitive function in normal aging and in older adults with mild cognitive impairment. Psicothema, 25, 18 – 24. First citation in articleGoogle Scholar

  • Bodling, A. M., Denney, D. R. & Lynch, S. G. (2012). Individual Variability in Speed of Information Processing: An Index of Cognitive Impairment in Multiple Sclerosis. Neuropsychology, 26, 357 – 367. First citation in articleCrossrefGoogle Scholar

  • Bokura, H., Yamaguchi, S. & Kobayashi, S. (2005). Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia, 43, 967 – 975. First citation in articleCrossrefGoogle Scholar

  • Brandt, J., Rubinsky, E. & Lassen, G. (1985). Uncovering Malingered Amnesia. Annals of the New York Academy of Sciences, 444, 502 – 503. First citation in articleCrossrefGoogle Scholar

  • Bruce, J. M., Bruce, A. S. & Arnett, P. A. (2010). Response variability is associated with self-reported cognitive fatigue in multiple sclerosis. Neuropsychology, 24, 77 – 83. First citation in articleCrossrefGoogle Scholar

  • Bruhn, A. R. & Reed, M. R. (1975). Simulation of Brain Damage on the Bender-Gestalt Test by College Subjects. Journal of Personality Assessment, 39, 244 – 255. First citation in articleCrossrefGoogle Scholar

  • Christensen, H., Dear, K.B.G., Anstey, K.J., Parslow, R.A., Sachdev, P. & Jorm, A.F. (2005). Within-Occasion Intraindividual Variability and Preclinical Diagnostic Status: Is Intraindividual Variability an Indicator of Mild Cognitive Impairment? Neuropsychology, 19, 309 – 317. First citation in articleCrossrefGoogle Scholar

  • Demaree, H. A., DeLuca, J., Gaudino, E. A. & Diamond, B. J. (1999). Speed of information processing as a key deficit in multiple sclerosis: implications for rehabilitation. Journal of Neurology Neurosurgery and Psychiatry, 67, 661 – 663. First citation in articleCrossrefGoogle Scholar

  • Denney, D. R., Lynch, S. G., Parmenter, B. A. & Horne, N. (2004). Cognitive impairment in relapsing and primary progressive multiple sclerosis: Mostly a matter of speed. Journal of the International Neuropsychological Society, 10, 948 – 956. First citation in articleCrossrefGoogle Scholar

  • Faust, D., Hart, K. J., Guilmette, T. J. & Arkes, H. R. (1988). Neuropsychologists’ Capacity to Detect Adolescent Malingerers. Professional Psychology: Research and Practice, 19, 508 – 515. First citation in articleCrossrefGoogle Scholar

  • Faust, D. & Ziskin, J. (1988). The Expert Witness in Psychology and Psychiatry. Science, 241, 31 – 35. First citation in articleCrossrefGoogle Scholar

  • Gauggel, S., Rieger, M. & Feghoff, T. A. (2004). Inhibition of ongoing responses in patients with Parkinson’s disease. Journal of Neurology Neurosurgery and Psychiatry, 75, 539 – 544. First citation in articleGoogle Scholar

  • Goebel, R. A. (1983). Detection of Faking on the Halstead-Reitan Neuropsychological Test Battery. Journal of Clinical Psychology, 39, 731 – 742. First citation in articleCrossrefGoogle Scholar

  • Green, P. (2004). Medical Symptom Validity Test (MSVT) for Microsoft Windows: User’s Manual. Edmonton, Canada: Green’s Publishing. First citation in articleGoogle Scholar

  • Green, P., Allen, L. & Astner, K. (1995). Manual of the Computerized Word Memory Test. Durham, NC: CogniSyst. First citation in articleGoogle Scholar

  • Green, P., Rohling, M. L., Lees-Haley, P. R. & Allen, L. M. (2001). Effort has a greater effect on test scores than severe brain injury in compensation claimants. Brain Injury, 15, 1045 – 1060. First citation in articleCrossrefGoogle Scholar

  • Greve, K. W., Ord, J. S., Bianchini, K. J. & Curtis, K. L. (2009). Prevalence of Malingering in Patients With Chronic Pain Referred for Psychologic Evaluation in a Medico-Legal Context. Archives of Physical Medicine and Rehabilitation, 90, 1117 – 1126. First citation in articleCrossrefGoogle Scholar

  • Greve, K. W., Ord, J., Curtis, K. L., Bianchini, K. J. & Brennan, A. (2008). Detecting Malingering in Traumatic Brain Injury and Chronic Pain: A Comparison of Three Forced-Choice Symptom Validity Tests. Clinical Neuropsychologist, 22, 896 – 918. First citation in articleCrossrefGoogle Scholar

  • Guilmette, T. J., Hart, K. J. & Giuliano, A. J. (1993). Malingering Detection: The Use of a Forced-Choice Method in Identifying Organic Versus Simulated Memory Impairment. Clinical Neuropsychologist, 7, 59 – 69. First citation in articleCrossrefGoogle Scholar

  • Guilmette, T. J., Hart, K. J., Giuliano, A. J. & Leininger, B. E. (1994). Detecting Simulated Memory Impairment: Comparison of the Rey Fifteen-Item Test and the Hiscock Forced-Choice Procedure. Clinical Neuropsychologist, 8, 283 – 294. First citation in articleCrossrefGoogle Scholar

  • Heaton, R. K., Smith, H. H., Lehman, R. A. W. & Vogt, A. T. (1978). Prospects for Faking Believable Deficits on Neuropsychological Testing. Journal of Consulting and Clinical Psychology, 46, 892 – 900. First citation in articleCrossrefGoogle Scholar

  • Heubrock, D. (1995). Neuropsychologische Diagnostik bei Simulationsverdacht – ein Überblick über Forschungsergebnisse und Untersuchungsmethoden. Diagnostica, 41, 303 – 321. First citation in articleGoogle Scholar

  • Heubrock, D. & Petermann, F. (2000). Testbatterie zur Forensischen Neuropsychologie (TBFN): Neuropsychologische Diagnostik bei Simulationsverdacht. Testmanual. Frankfurt: Swets & Zeitlinger. First citation in articleGoogle Scholar

  • Heubrock, D., Scholl, H. & Petermann, F. (2013). Die differentielle Validität neuropsychologischer Testverfahren zum Nachweis nicht-authentischer Störungen. Zeitschrift für Neuropsychologie, 24, 229 – 238. First citation in articleLinkGoogle Scholar

  • Iverson, G. L. (2006). Ethical Issues Associated With the Assessment of Exaggeration, Poor Effort, and Malingering. Applied Neuropsychology, 13, 77 – 90. First citation in articleCrossrefGoogle Scholar

  • Iverson, G. L. & Franzen, M. D. (1998). Detecting malingered memory deficits with the Recognition Memory Test. Brain Injury, 12, 275 – 282. First citation in articleCrossrefGoogle Scholar

  • Langeluddecke, P. M. & Lucas, S. K. (2003). Quantitative measures of memory malingering on the Wechsler Memory Scale—Third edition in mild head injury litigants. Archives of Clinical Neuropsychology, 18, 181 – 197. First citation in articleGoogle Scholar

  • Larrabee, G. J. (2012). Performance Validity and Symptom Validity in Neuropsychological Assessment. Journal of the International Neuropsychological Society, 18, 625 – 631. First citation in articleCrossrefGoogle Scholar

  • Lezak, M. D., Howieson, D. B. & Loring, D. W. (2004). Neuropsychological Assessment (4. Auflage). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Martin, R. C., Franzen, M. D. & Orey, S. (1998). Magnitude of Error as a Strategy to Detect Feigned Memory Impairment. Clinical Neuropsychologist, 12, 84 – 91. First citation in articleCrossrefGoogle Scholar

  • Merten, T. (2002). Fragen der neuropsychologischen Diagnostik bei Simulationsverdacht. Fortschritte der Neurologie Psychiatrie, 70, 126 – 138. First citation in articleCrossrefGoogle Scholar

  • Merten, T. (2005). Der Stellenwert der Symptomvalidierung in der neuropsychologischen Begutachtung. Zeitschrift für Neuropsychologie, 16, 29 – 45. First citation in articleLinkGoogle Scholar

  • Merten, T., Henry, M. & Hilsabeck, R. (2004). Symptomvalidierungstests in der neuropsychologischen Diagnostik: eine Analogstudie. Zeitschrift für Neuropsychologie, 15, 81 – 90. First citation in articleLinkGoogle Scholar

  • Meyers, J. E., Galinsky, A. M. & Volbrecht, M. (1999). Malingering and Mild Brain Injury: How Low Is Too Low. Applied Neuropsychology, 6, 208 – 216. First citation in articleCrossrefGoogle Scholar

  • Meyers, J. E. & Volbrecht, M. E. (2003). A validation of multiple malingering detection methods in a large clinical sample. Archives of Clinical Neuropsychology, 18, 261 – 276. First citation in articleCrossrefGoogle Scholar

  • Millis, S. R. & Kler, S. (1995). Limitations of the Rey Fifteen-Item test in the Detection of Malingering. Clinical Neuropsychologist, 9, 241 – 244. First citation in articleCrossrefGoogle Scholar

  • Mittenberg, W., Patton, C., Canyock, E. M. & Condit, D. C. (2002). Base Rates of Malingering and Symptom Exaggeration. Journal of Clinical and Experimental Neuropsychology, 24, 1094 – 1102. First citation in articleCrossrefGoogle Scholar

  • Obeso, I., Wilkinson, L., Casabona, E., Bringas, M. L., Álvarez, M., Álvarez, L.et al. (2011). Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Experimental Brain Research, 212, 371 – 384. First citation in articleCrossrefGoogle Scholar

  • Phillips, M., Rogers, P., Haworth, J., Bayer, A. & Tales, A. (2013). Intra-Individual Reaction Time Variability in Mild Cognitive Impairment and Alzheimer’s Disease: Gender, Processing Load and Speed Factors. PLoS ONE, 8, 1 – 12. First citation in articleGoogle Scholar

  • Rees, L. M., Tombaugh, T. N., Gansler, D. A. & Moczynski, N. P. (1998). Five Validation Experiments of the Test of Memory Malingering (TOMM). Psychological Assessment, 10, 10 – 20. First citation in articleCrossrefGoogle Scholar

  • Reicker, L., Tombaugh, T., Walker, L. & Freedman, M. (2007). Reaction time: An alternative method for assessing the effects of multiple sclerosis on information processing speed. Archives of Clinical Neuropsychology, 22, 655 – 664. First citation in articleCrossrefGoogle Scholar

  • Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France. First citation in articleGoogle Scholar

  • Reznek, L. (2005). The Rey 15-item memory test for malingering: A meta-analysis. Brain Injury, 19, 539 – 543. First citation in articleCrossrefGoogle Scholar

  • Rogers, R. (2008). An Introduction to Response Styles. In R. Rogers (Hrsg.), Clinical Assessment of Malingering and Deception (S. 3 – 13). New York: Guilford Press. First citation in articleGoogle Scholar

  • Rogers, R., Harrell, E. H. & Liff, C. D. (1993). Feigning neuropsychological impairment: A critical review of methodological and clinical considerations. Clinical Psychology Review, 13, 255 – 274. First citation in articleCrossrefGoogle Scholar

  • Ruet, A., Deloire, M., Charré-Morin, J., Hamel, D. & Brochet, B. (2013). Cognitive impairment differs between primary progressive and relapsing-remitting MS. Neurology, 80, 1501 – 1508. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A. & Berish, D. E. (2005). Correlates of Within-Person (Across-Occasion) Variability in Reaction Time. Neuropsychology, 19, 77 – 87. First citation in articleCrossrefGoogle Scholar

  • Saß, H., Wittchen, H. U. & Zaudig, M. (1996). Diagnostisches und Statistisches Manual Psychischer Störungen DSM-IV. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schacter, D. L. (1986). Amnesia and Crime: How Much Do We Really Know? American Psychologist, 41, 286 – 295. First citation in articleCrossrefGoogle Scholar

  • Schmiedek, F., Lövdén, M. & Lindenberger, U. (2009). On the Relation of Mean Reaction Time and Intraindividual Reaction Time Variability. Psychology and Aging, 24, 841 – 857. First citation in articleCrossrefGoogle Scholar

  • Schretlen, D., Brandt, J., Krafft, L. & Van Gorp, W. (1991). Some Caveats in Using the Rey 15-Item Memory Test to Detect Malingered Amnesia. Psychological Assessment, 3, 667 – 672. First citation in articleCrossrefGoogle Scholar

  • Steck, P., Reuter, B., Meir-Korrell, S. & Schönle, P. (2000). Zur Simulierbarkeit von neuropsychologischen Defiziten bei Reaktions- und bei Intelligenztests. Zeitschrift für Neuropsychologie, 11, 128 – 140. First citation in articleLinkGoogle Scholar

  • Stevens, A., Friedel, E., Mehren, G. & Merten, T. (2008). Malingering and uncooperativeness in psychiatric and psychological assessment: Prevalence and effects in a German sample of claimants. Psychiatry Research, 157, 191 – 200. First citation in articleCrossrefGoogle Scholar

  • Strauss, E., Hultsch, D. F., Hunter, M., Slick, D.J., Patry, B. & Levy-Bencheton, J. (2000). Using Intraindividual Variability to Detect Malingering in Cognitive Performance. Clinical Neuropsychologist, 14, 420 – 432. First citation in articleGoogle Scholar

  • Strauss, E., Slick, D. J., Levy-Bencheton, J., Hunter, M., MacDonald, S. W. S. & Hultsch, D. F. (2002). Intraindividual variability as an indicator of malingering in head injury. Archives of Clinical Neuropsychology, 17, 423 – 444. First citation in articleCrossrefGoogle Scholar

  • Strauss, E., Spellacy, F., Hunter, M. & Berry, T. (1994). Assessing Believable Deficits on Measures of Attention and Information Processing Capacity. Archives of Clinical Neuropsychology, 9, 483 – 490. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. & Hartje, W. (2002). Experimentelle und klinische Neuropsychologie. In W. Hartje & K. Poeck, (Hrsg.), Klinische Neuropsychologie (S. 1 – 51). Stuttgart: Thieme. First citation in articleGoogle Scholar

  • Suhr, J. A. & Boyer, D. (1999). Use of the Wisconsin Card Sorting Test in the Detection of Malingering in Student Simulator and Patient Samples. Journal of Clinical and Experimental Neuropsychology, 21, 701 – 708. First citation in articleCrossrefGoogle Scholar

  • Wagenmakers, E. J. & Brown, S. (2007). On the Linear Relation Between the Mean and the Standard Deviation of a Response Time Distribution. Psychological Review, 114, 830 – 841. First citation in articleCrossrefGoogle Scholar

  • Wagenmakers, E. J., Grasman, R. P. P. P. & Molenaar, P. C. M. (2005). On the relation between the mean and the variance of a diffusion model response time distribution. Journal of Mathematical Psychology, 49, 195 – 204. First citation in articleCrossrefGoogle Scholar

  • Wetter, M. W. & Corrigan, S. K. (1995). Providing Information to Clients About Psychological Tests: A Survey of Attorneys’ and Law Students’ Attitudes. Professional Psychology-Research and Practice, 26, 474 – 477. First citation in articleCrossrefGoogle Scholar

  • Wiggins, E. C. & Brandt, J. (1988). The Detection of Simulated Amnesia. Law and Human Behavior, 12, 57 – 78. First citation in articleCrossrefGoogle Scholar

  • Willison, J. & Tombaugh, T. N. (2006). Detecting simulation of attention deficits using reaction time tests. Archives of Clinical Neuropsychology, 21, 41 – 52. First citation in articleCrossrefGoogle Scholar

  • Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R. & van den Wildenberg, W. P. M. (2010). The Effect of Parkinson’s Disease on the Dynamics of On-line and Proactive Cognitive Control during Action Selection. Journal of Cognitive Neuroscience, 22, 2058 – 2073. First citation in articleCrossrefGoogle Scholar

  • Zimmermann, P. & Fimm, B. (2009). Testbatterie zur Aufmerksamkeitsprüfung (TAP). Version 2.2. Herzogenrath: PSYTEST. First citation in articleGoogle Scholar