Skip to main content
Übersichtsarbeit

Das plastische Hirn

Published Online:https://doi.org/10.1024/2235-0977/a000080

Einer der herausragenden Befunde der neurowissenschaftlichen Forschung in den letzten 25 bis 30 Jahren ist die Entdeckung der enormen Formbarkeit des menschlichen Gehirns. Diese Plastizität des Gehirns äußert sich in der strukturellen und funktionellen Plastizität des Gehirns. Unter der funktionellen Neuroplastizität versteht man erfahrungsbedingte neurophysiologische Aktivitätsveränderungen innerhalb von neuronalen Netzwerken, während die strukturelle Neuroplastizität die erfahrungsbedingte morphologische Veränderung des Gehirns beschreibt. Im Rahmen dieses Übersichtsartikels werden – nach einer historischen Einordnung der Plastizitätsforschung – die wesentlichen Befunde dieser Forschungsrichtung kurz dargestellt. Anschließend werden die Konsequenzen dieser neuen Forschungsrichtung für die Grundlagenforschung aber auch für die Reha-Forschung und die Suche nach Optimierungsmöglichkeiten des gesunden Gehirns diskutiert.


The Plastic Human Brain

One of the most important findings of recent neuroscientific research is the discovery of the plastic nature of the human brain. Brain plasticity happens on the structural and/or functional level. Functional plasticity describes the learning- and experience-dependent changes in neurophysiological activity while structural plasticity refers to the learning- and experience-dependent morphological changes of the human brain. In this short review paper I summarize basic findings and principles of plasticity research. I will discuss modern plasticity research in the context of the historical developments of this research line. Finally, the consequences for therapy, rehabilitation, education and the general view on human behavior will be discussed.

Literatur

  • Allard, T. , Clark, S. A. , Jenkins, W. M. , Merzenich, M. M. (1991). Reorganization of somatosensory area 3b representations in adult owl monkeys after digital syndactyly. Journal of Neurophysiology, 66, 1048 – 1058. First citation in articleCrossrefGoogle Scholar

  • Altenmuller, E. , Marco-Pallares, J. , Munte, T. F. , Schneider, S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Annals of the New York Academy of Sciences, 1169, 395 – 405. First citation in articleCrossrefGoogle Scholar

  • Amunts, K. , Schlaug, G. , Jäncke, L. , Steinmetz, H. , Schleicher, A. , Dabringhaus, A. et al. (1997). Motor cortex and hand motor skills: structural compliance in the human brain. Human Brain Mapping, 5, 206 – 215. First citation in articleCrossrefGoogle Scholar

  • Baur, V. , Hänggi, J. , Langer, N. , Jäncke, L. (2013). Resting-state functional and structural connectivity within an insula-amygdala route specifically index state and trait anxiety. Biological Psychiatry, 73, 85 – 92. First citation in articleCrossrefGoogle Scholar

  • Bezzola, L. , Merillat, S. , Gaser, C. , Jäncke, L. (2011). Training-induced neural plasticity in golf novices. Journal of Neuroscience, 31, 12444 – 12448. First citation in articleCrossrefGoogle Scholar

  • Boggio, P. S. , Fregni, F. , Bermpohl, F. , Mansur, C. G. , Rosa, M. , Rumi, D. O. et al. (2005). Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's disease and concurrent depression. Movement Disorders, 20, 1178 – 1184. First citation in articleCrossrefGoogle Scholar

  • Braun, A. K. , Bock, J. (2014). Ursachen für ADHS: Gene oder Umwelt? Lernen und Lernstörungen, 3, 192 – 195. First citation in articleGoogle Scholar

  • Draganski, B. , Gaser, C. , Busch, V. , Schuierer, G. , Bogdahn, U. , May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature, 427 (6972), 311 – 312. First citation in articleCrossrefGoogle Scholar

  • Elbert, T. , Pantev, C. , Wienbruch, C. , Rockstroh, B. , Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305 – 307. First citation in articleCrossrefGoogle Scholar

  • Elmer, S. , Hänggi, J. , Meyer, M. , Jäncke, L. (2013). Increased cortical surface area of the left planum temporale in musicians facilitates the categorization of phonetic and temporal speech sounds. Cortex, 49, 2812 – 2821. First citation in articleCrossrefGoogle Scholar

  • Ericsson, K. A. , Krampe, R. T. , Clemens, T. (1993). The role of deliberate practise in the acquisition of expert performance. Psychological Review, 100, 363 – 406. First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience and biobehavioral reviews, 44, 1 – 17. First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. II: Creativity, the performing arts and ecological validity. Neuroscience & Biobehavioral Reviews, 44C, 142 – 158. First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J. H. , Holmes, P. , Hirst, L. , Bulpin, K. , Rahman, S. , van Run, C. et al. (2014). Replication of elite music performance enhancement following alpha/theta neurofeedback and application to novice performance and improvisation with SMR benefits. Biological Psychology, 95, 96 – 107. First citation in articleCrossrefGoogle Scholar

  • Hänggi, J. , Beeli, G. , Oechslin, M. S. , Jäncke, L. (2008). The multiple synaesthete E. S.: neuroanatomical basis of interval-taste and tone-colour synaesthesia. NeuroImage, 43, 192 – 203. First citation in articleCrossrefGoogle Scholar

  • Hauser, T. U. , Rotzer, S. , Grabner, R. H. , Merillat, S. , Jäncke, L. (2013). Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS). Frontiers in Human Neuroscience, 7, 244 – 244. First citation in articleCrossrefGoogle Scholar

  • Hebb, D. O. (1949). The organization of behavior. New York: Wiley. First citation in articleGoogle Scholar

  • James, W. (1890). The principles of psychology. New York/London: Holt & Macmillan. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. (2009a). The plastic human brain. Restorative Neurology and Neuroscience, 27, 521 – 538. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. (2009b). Music drives brain plasticity. F1000 Biology Reports, 1, 1 – 6. First citation in articleGoogle Scholar

  • Jäncke, L. (2013a). Lehrbuch Kognitive Neurowissenschaften. Bern: Huber. First citation in articleGoogle Scholar

  • Jäncke, L. (2013b). Nicht immer sind die Gene schuld – Wie Erfahrungen unser Gehirn beeinflusst. Psychoscope, 4, 4 – 7. First citation in articleGoogle Scholar

  • Jäncke, L. , Beeli, G. , Eulig, C. , Hänggi, J. (2009a). The neuroanatomy of grapheme-color synesthesia. European Journal of Neuroscience, 29, 1287 – 1293. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. , Koeneke, S. , Hoppe, A. , Rominger, C. , Hänggi, J. (2009b). The architecture of the golfer's brain. PLoS ONE, 4 (3), e4785 – e4785. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. , Shah, N. J. , Peters, M. (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain research. Cognitive Brain Research, 10, 177 – 183. First citation in articleCrossrefGoogle Scholar

  • Jenkins, W. M. , Merzenich, M. M. , Recanzone, G. (1990). Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia, 28, 573 – 584. First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. , Sauseng, P. , Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17, 1129 – 1133. First citation in articleCrossrefGoogle Scholar

  • Kober, S. E. , Witte, M. , Ninaus, M. , Neuper, C. , Wood, G. (2013). Learning to modulate one's own brain activity: the effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695 – 695. First citation in articleCrossrefGoogle Scholar

  • Koeneke, S. , Lutz, K. , Wustenberg, T. , Jäncke, L. (2004). Long-term training affects cerebellar processing in skilled keyboard players. Neuroreport, 15, 1279 – 1282. First citation in articleCrossrefGoogle Scholar

  • Konorski, J. (1948). Conditioned reflexes and neuron organization. Translated from the Polish manuscript under the author's supervision. First citation in articleGoogle Scholar

  • Langer, N. , Hänggi, J. , Muller, N. A. , Simmen, H. P. , Jäncke, L. (2012). Effects of limb immobilization on brain plasticity. Neurology, 78, 182 – 188. First citation in articleCrossrefGoogle Scholar

  • Langer, N. , von Bastian, C. C. , Wirz, H. , Oberauer, K. , Jäncke, L. (2013). The effects of working memory training on functional brain network efficiency. Cortex, 49, 2424 – 2438. First citation in articleCrossrefGoogle Scholar

  • Lauth, G. W. , Ramacher-Faasen, N. (2014). ADHS in der Schule – ein Plädoyer für eine differenzierte Betrachtung. Lernen und Lernstörungen, 3, 188 – 192. First citation in articleGoogle Scholar

  • May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Science, 15, 475 – 482. First citation in articleCrossrefGoogle Scholar

  • Meinzer, M. , Jahnigen, S. , Copland, D. A. , Darkow, R. , Grittner, U. , Avirame, K. et al. (2014). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 50, 137 – 147. First citation in articleCrossrefGoogle Scholar

  • Munte, T. F. , Altenmuller, E. , Jäncke, L. (2002). The musician's brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473 – 478. First citation in articleCrossrefGoogle Scholar

  • Muri, R. M. , Cazzoli, D. , Nef, T. , Mosimann, U. P. , Hopfner, S. , Nyffeler, T. (2013). Non-invasive brain stimulation in neglect rehabilitation: an update. Frontiers in Human Neuroscience, 7, 248 – 248. First citation in articleCrossrefGoogle Scholar

  • Naeser, M. A. , Martin, P. I. , Nicholas, M. , Baker, E. H. , Seekins, H. , Helm-Estabrooks, N. et al. (2005). Improved naming after TMS treatments in a chronic, global aphasia patient – case report. Neurocase, 11, 182 – 193. First citation in articleCrossrefGoogle Scholar

  • Oechslin, M. S. , Imfeld, A. , Loenneker, T. , Meyer, M. , Jäncke, L. (2009). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Frontiers in Human Neuroscience, 3, 76 – 76. First citation in articleGoogle Scholar

  • Otten, L. J. , Quayle, A. H. , Akram, S. , Ditewig, T. A. , Rugg, M. D. (2006). Brain activity before an event predicts later recollection. Nature Neuroscience, 9, 489 – 491. First citation in articleCrossrefGoogle Scholar

  • Pascual-Leone, A. , Amedi, A. , Fregni, F. , Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377 – 401. First citation in articleCrossrefGoogle Scholar

  • Picard, F. , Friston, K. (2014). Predictions, perception, and a sense of self. Neurology. Published online, August 2014. First citation in articleGoogle Scholar

  • Recanzone, G. H. , Schreiner, C. E. , Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13, 87 – 103. First citation in articleCrossrefGoogle Scholar

  • Rothenberger, L. G. (2014). Genetik bei ADHS – zwischen Euphorie und Skepsis. Lernen und Lernstörungen, 3, 185 – 188. First citation in articleLinkGoogle Scholar

  • Särkämo, T. , Pihko, E. , Laitinen, S. , Forsblom, A. , Soinila, S. , Mikkonen, M. et al. (2010). Music and speech listening enhance the recovery of early sensory processing after stroke. Journal of Cognitive Neuroscience, 22, 2716 – 2727. First citation in articleCrossrefGoogle Scholar

  • Särkämo, T. , Ripollés, P. , Vepsäläinen, H. , Autti, T. , Silvennoinen, H. M. , Salli, E. et al. (2014). Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study. Frontiers in Human Neuroscience, 8, 245. First citation in articleGoogle Scholar

  • Särkämö, T. , Tervaniemi, M. , Laitinen, S. , Forsblom, A. , Soinila, S. , Mikkonen, M. et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain, 131, 866 – 876. First citation in articleCrossrefGoogle Scholar

  • Schlaug, G. , Jäncke, L. , Huang, Y. , Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267 (5198), 699 – 701. First citation in articleCrossrefGoogle Scholar

  • Schneider, P. , Scherg, M. , Dosch, H. G. , Specht, H. J. , Gutschalk, A. , Rupp, A. (2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688 – 694. First citation in articleCrossrefGoogle Scholar

  • Schneider, S. , Schonle, P. W. , Altenmuller, E. , Munte, T. F. (2007). Using musical instruments to improve motor skill recovery following a stroke. Journal of Neurology, 254, 1339 – 1346. First citation in articleCrossrefGoogle Scholar

  • Schneider, P. , Sluming, V. , Roberts, N. , Bleeck, S. , Rupp, A. (2005). Structural, functional, and perceptual differences in Heschl's gyrus and musical instrument preference. Annals of the New York Academy of Sciences, 1060, 387 – 394. First citation in articleCrossrefGoogle Scholar

  • Von Aster, S. , von Aster, M. , von Aster, M. (2014). Kinderpsychiatrie am Scheideweg: Störungskonzepte mit unerwünschten Nebenwirkungen. Lernen und Lernstörungen, 3, 195 – 202. First citation in articleGoogle Scholar

  • Vossel, S. , Geng, J. J. , Friston, K. J. (2014). Attention, predictions and expectations, and their violation: attentional control in the human brain. Frontiers in Human Neurosciences, 8, 490 – 490. First citation in articleGoogle Scholar

  • Wan, F. , Nan, W. , Vai, M. I. , Rosa, A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Frontiers in Human Neurosciences, 8, 500 – 500. First citation in articleGoogle Scholar

  • Wundt, W. (1874). Grundzüge der physiologischen Psychologie. Leipzig: Engelmann. First citation in articleGoogle Scholar

  • Wundt, W. (1896). Grundriss der Psychologie. Leipzig: Engelmann. First citation in articleGoogle Scholar

  • Zatorre, R. J. , Fields, R. D. , Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15, 528 – 536. First citation in articleCrossrefGoogle Scholar

  • Zoefel, B. , Huster, R. J. , Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54, 1427 – 1431. First citation in articleCrossrefGoogle Scholar