Skip to main content
Published Online:https://doi.org/10.1024/2235-0977/a000130

Zusammenfassung. Lesen ist für die meisten Menschen ein stark automatisierter, komplexer mentaler Vorgang, der einmal erlernt, scheinbar bis ins hohe Alter stabil erhalten bleibt. Dabei können tiefere Textverständnisprozesse, ebenso wie reflektive oder ästhetische Vorgänge (z. B. bei der Poesierezeption) nur dann effizient ablaufen, wenn die zugrunde liegende Einzelworterkennung flüssig funktioniert. Während der Leseerwerb im Bereich der Einzelworterkennung intensiv erforscht wurde, existieren kaum Studien, welche die Entwicklung der visuellen Worterkennung im Alter systematisch untersucht haben. Dies ist verwunderlich, wenn man bedenkt, dass der Umgang mit Wörtern, Sprache und Texten kognitive Prozesse rekrutiert, die im Alter von einem Rückgang neurochemischer, -anatomischer und funktionaler Ressourcen gekennzeichnet sind. Daher war Ziel dieser Arbeit, eine Übersicht der bisherigen Forschung von Alterseffekten auf die visuelle Worterkennung zu geben, die den aktuellen Forschungsstand zusammenzufasst. Im Fokus standen dabei Variablen, mit denen typischerweise lexikalische Prozesse und sublexikalische Prozesse operationalisiert werden. Es wurden 16 Studien identifiziert, die Wortfrequenz-, Längen- und orthographische Nachbarschaftseffekte im Alter sowohl auf Verhaltensebene als auch auf neuronaler Ebene untersucht haben. Die Ergebnisse sprechen dafür, dass die visuelle Wortverarbeitung im Bereich der Ganzworterkennung bis ins hohe Alter relativ intakt und in ihrer Ausprägung annähernd konstant bleibt. Während Frequenzeffekte im Alter vergleichbar zu denen jüngerer Leser sind, könnten lexikalische Inhibitions- und Aktivierungsprozesse von Veränderungsprozessen im Alter betroffen sein. Die Ergebnisse zum Wortlängeneffekt sind ambivalent, könnten aber auf altersbedingte Unterschiede in den sublexikalischen Prozessen hindeuten. Gleichzeitig wird ein Mangel an neurokognitiven und deutschsprachigen Studien sichtbar.


Does reading change with age? A review of aging effects on visual word recognition

Abstract.Background: Reading is a highly automized, complex mental process that, once acquired, functions efficiently for most people. Text comprehension as well as reflective or aesthetic processes (e. g., in poetry reception) can only be performed effortlessly at a high level when the underlying single word recognition runs smoothly. In fact, single word recognition appears as important for developing key concepts in cognitive psychology and psycholinguistics as the cell in biology. While factors influencing reading acquisition as well as reading processes in young adults have been extensively investigated across different languages, only a small number of studies focussed on developmental aspects of visual word recognition over the life span, i. e. on changes that might occur during aging and/or in old age. Considering that handling words, speech, and texts recruits cognitive processes that are all marked by a decline in neurochemical, neuroanatomical and functional resources with increasing age this seems rather astonishing, even more so as this deficiency was already noted almost 20 years ago. Aims: The aim of this review is threefold. First, we give a summary of the research on visual word recognition in young adult readers. This includes describing common paradigms, major findings regarding key variables and methods, as well as a short description of popular models of word recognition. Second, we summarize findings of studies investigating age effects on visual word recognition and provide an overview on the current state of affairs within that field. Third, we discuss chief findings and their implications for future research. Methods: As the lexical decision task is explicitly recommended to investigate single word recognition only studies using this task entered the review. To determine whether age affects processing on the whole word level or on a sublexical level (e. g., syllables) we looked at frequency and orthographic neighborhood effects (word level), as well as at length effects (sublexical level) and their interaction with age. We were able to identify 16 studies that met the selection criteria. Only results obtained from healthy, normal reading adults are reported. The age span covered by this review ranges from 17 to 88 years. Results: By far, most studies concentrated on frequency effects as a function of age. From 15 studies addressing this topic, 12 reported no significant interaction of age and frequency, i. e. there is no evidence for any differences between young and older participants. Both age groups responded equally faster to high frequency than to low frequency words. Only two studies found larger frequency effects for older than for younger adults with one of these two studies reporting that result for both the lexical decision task and naming task, yet not for the lexical decision task alone. One study reported no interaction between frequency and age at first but reported larger frequency effects for younger than for older adults after adjusting the young subjects’ latency data to that of the older ones. Length effects as a function of age were addressed in six studies. Two of them found significant interactions between word length and age. Larger length effects were reported for older participants than for younger participants. Two studies did not find any differences between the age groups. Two other studies reported a significant word length disadvantage for older adults but only after adjusting the younger subjects' latency data to that of the old ones; without adjustment no interaction between word length and age could be found. Only three studies could be identified that looked into orthographic neighborhood effects as a function of age. While one study reported no effects of orthographic neighborhood for both the younger and older adults two studies found smaller neighborhood effects for older participants than for younger participants: Older adults tended to respond more slowly to words with a high neighborhood density than did younger adults, younger adults responded more slowly to words with a high neighborhood frequency whereas older adults showed no such effect. Neuronal effects of word frequency and word length as a function of age were addressed in only one study by means of cerebral blood flow. Solely for older participants frequency effects were found in Brodmann Areas (BA) 17, 18 and 37 in the left hemisphere. The slower they responded to low frequent words, the more activation older adults produced in these areas. Likewise, only older adults showed word length effects in BA 17 with activity being larger the less influence word length had on reaction time. No neuronal effects of word frequency and word length were obtained for the younger age group. Discussion: There is a variety of reasons that can generally account for the variability in findings which every researcher in the field of age effects in language processing should be aware of. First, there is an ongoing debate whether vocabulary scores of older and younger adults should be matched or not. Naturally, older adults should have an advantage over younger adults in vocabulary knowledge due to their prolonged exposure to language. However, matching the scores might confound results. Second, besides vocabulary there are further important variables such as time of formal education and acuity that should be taken into account. Especially acuity seems to have an enormous effect in recognition tasks, but information on this issue is omitted in a number of studies of this review. Third, as a rule, reaction times of older participants are longer than those of younger participants, making special analyses necessary: Yet, there are different approaches taken by different research groups. Furthermore, aging per se is an extremely heterogeneous process leaving some older participants operate on a fairly high level, while others show clear signs of cognitive decline. As a consequence, variance in data is larger in the older age group than in the younger. When it comes to differences in results reported for frequency effects as a function of age three explanations are brought forward. First, objective frequency measures correspond more to the lexicon of older adults than to that of younger adults. Second, when comparing older and younger participants with similar vocabulary scores chances are, that these older participants are more likely to be less competent readers. Less competent readers, in turn, tend to produce larger frequency effects than competent ones. Third, the level of education influences the magnitude of the frequency effect as well. Less educated subjects produce a more pronounced frequency effect than do educated ones. Yet, all three explanations do not fully account for the reported results. Differences in results concerning the length effect as a function of age might be due to characteristics of the stimulus material. But as not all details describing the stimuli are given in the studies this conclusion remains speculative. Results concerning orthographic neighborhood point towards decreased lexical activation and inhibition in older adults. Neuronally, findings suggest that older and younger adults process frequency and word length differently. Conclusion: To answer the question whether reading changes with age one obviously has to consider the different subprocesses of reading. Lexical processing which is crucial for word recognition seems to be only partially affected by age. The lack of an interactive effect of frequency and age suggests visual word recognition to be relatively stable over the lifetime. Yet, results reported for orthographic neighborhood point towards a change in lexical inhibition and activation processes in older adults. Age-dependent changes in reading seem to emerge most notably at the sublexical level as findings concerning word length effects indicate.

Literatur

  • Aberson, D. H. A. & Bouwhuis, D. G. (1997). Silent reading as determined by age and visual acuity. Journal of Research in Reading , 20 (3), 184 – 204. CrossrefGoogle Scholar

  • Abrams, L. & Farrell, M. T. (2011). Language processing in normal aging. In J. Guendouzi, F. Loncke & M. J. Williams (Eds.), The handbook of psycholinguistic and cognitive processes: Perspectives in communication disorders (pp. 49 – 73). New York, NY: Psychology Press. Google Scholar

  • Allen, P. A. , Madden, D. J. & Crozier, L. C. (1991). Adult age differences in letter-level and word-level processing. Psychology and Aging , 6 (2), 261 – 271. CrossrefGoogle Scholar

  • Allen, P. A. , Madden, D. J. & Slane, S. (1995). Visual word encoding and the effect of adult age and word frequency. In P. A. Allen & Th. R. Bashore (Eds.), Age differences in word and language processing (pp. 30 – 71). Elsevier. CrossrefGoogle Scholar

  • Allen, P. A. , Madden, D. J. , Weber, T. A. & Groth, K. E. (1993). Influence of age and processing stage on visual word recognition. Psychology and Aging , 8 (2), 274 – 282. CrossrefGoogle Scholar

  • Allen, P. A. , Murphy, M. D. , Kaufman, M. , Groth, K. E. & Begovic, A. (2004). Age differences in central (semantic) and peripheral processing: The importance of considering both response times and errors . Journal of Gerontology: Psychological Sciences , 59 B , 210 – 219. CrossrefGoogle Scholar

  • Allen, P. A. , Smith, A. F. , Groth, K. E. , Pickle, J. L. , Grabbe, J. W. & Madden, D. J. (2002). Differential age effects for case and hue mixing in visual word recognition. Psychology and Aging , 17 (4), 622 – 635. CrossrefGoogle Scholar

  • Andrews, S. (1989). Frequency and neighborhood size effects on lexical access: Activation or search? Journal of Experimental Psychology: Learning, Memory, and Cognition , 15 , 802 – 814. CrossrefGoogle Scholar

  • Andrews, S. (1992). Frequency and neighborhood effects on lexical access: Lexical similarity or orthographic redundancy? Journal of Experimental Psychology: Learning, Memory, and Cognition , 18 (2), 234 – 254. CrossrefGoogle Scholar

  • Andrews, S. (1997). The effect of orthographic similarity on lexical retrieval: Resolving neighborhood conflicts. Psychonomic Bulletin & Review , 4 (4), 439 – 461. CrossrefGoogle Scholar

  • Baayen, R. H. , Piepenbrock, R. & van Rijn, H. (1993). The CELEX Lexical Database [CD-ROM]. Philadelphia: Linguistic Data Consortium. Google Scholar

  • Balota, D. A. & Chumbley, J. I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology. Human Perception and Performance , 10 (3), 340 – 357. CrossrefGoogle Scholar

  • Balota, D. A. , Cortese, M. J. , Sergent-Marshall, S. D. , Spieler, D. H. & Yap, M. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General , 133 (2), 283 – 316. CrossrefGoogle Scholar

  • Balota, D. A. & Ferraro, F. R. (1996). Lexical, sublexical, and implicit memory processes in healthy young and healthy older adults and in individuals with dementia of the Alzheimer type. Neuropsychology , 10 (1), 82 – 95. CrossrefGoogle Scholar

  • Baltes, P. B. & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: A new window to the study of cognitive aging? Psychology and Aging , 12 (1), 12 – 21. CrossrefGoogle Scholar

  • Borella, E. , Ghisletta, P. & de Ribaupierre, A. (2011). Age differences in text processing: the role of working memory, inhibition, and processing speed. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences , 66 (3), 311 – 320. CrossrefGoogle Scholar

  • Borowsky, R. & Besner, D. (1993). Visual word recognition: A multistage activation model. Journal of Experimental Psychology. Learning, Memory, and Cognition , 19 , 813 – 840. CrossrefGoogle Scholar

  • Bowles, N. L. & Poon, L. W. (1981). The effect of age on speed of lexical access. Experimental Aging Research , 7 (4), 417 – 425. CrossrefGoogle Scholar

  • Braun, M. , Hutzler, F. , Ziegler, J. C. , Dambacher, M. , & Jacobs, A. M. (2009). Pseudohomophone effects provide evidence of early lexico-phonological processing in visual word recognition. Human Brain Mapping , 30 , 1977 – 1989. CrossrefGoogle Scholar

  • Broadbent, D. E. (1967). Word-frequency effect and response bias. Psychological Review , 74 (1), 1 – 15. CrossrefGoogle Scholar

  • Brysbaert, M. , Buchmeier, M. , Conrad, M. , Jacobs, A. M. , Bölte, J. & Böhl, A. (2011). The word frequency effect: A review of recent developments and implications for the choice of frequency estimates in German. Experimental Psychology , 58 (5), 412 – 424. LinkGoogle Scholar

  • Burke, D. M. & Shafto, M. A. (2008). Language and aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The Handbook of Aging and Cognition ( 3rd ed. , pp. 373 – 443). New York, NY: Psychology Press. Google Scholar

  • Bush, A. L. H. , Allen, P. A. , Kaut, K. P. & Ogrocki, P. K. (2007). Influence of mild cognitive impairment on visual word recognition. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition , 14 (4), 329 – 352. CrossrefGoogle Scholar

  • Button, K. S. , Ioannidis, J. P. A. , Mokrysz, C. , Nosek, B. A. , Flint, J. , Robinson, E. S. J. et al. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature reviews. Neuroscience 14 (5), 365 – 376. CrossrefGoogle Scholar

  • Carreiras, M. , Perea, M. & Grainger, J. (1997). Effects of orthographic neighborhood in visual word recognition: cross-task comparisons. Journal of Experimental Psychology. Learning, Memory, and Cognition , 23 , 857 – 871. CrossrefGoogle Scholar

  • Caza, N. & Moscovitch, M. (2005). Effects of cumulative frequency, but not of frequency trajectory, in lexical decision times of older adults and patients with Alzheimer's disease. Journal of Memory and Language , 53 (3), 456 – 471. CrossrefGoogle Scholar

  • Coltheart, M. , Curtis, B. , Atkins, P. & Haller, M. (1993). Models of reading aloud: Dual-route and parallel-distributed-processing approaches. Psychological Review , 100 (4), 589 – 608. CrossrefGoogle Scholar

  • Coltheart, M. , Davelaar, E. , Jonasson, J. T. & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention and Performance ( Vol. 6 , pp. 535 – 555). London: Academic Press. Google Scholar

  • Coltheart, M. , Rastle, K. , Perry, C. , Langdon, R. & Ziegler, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychological Review , 108 (1), 204 – 256. CrossrefGoogle Scholar

  • Daffner, K. R. , Haring, A. E. , Alperin, B. R. , Zhuravleva, T. Y. , Mott, K. K. & Holcomb, P. J. (2013). The impact of visual acuity on age-related differences in neural markers of early visual processing. NeuroImage , 67 , 127 – 136. CrossrefGoogle Scholar

  • Dambacher, M. , Kliegl, R. , Hofmann, M. & Jacobs, A. M. (2006). Frequency and predictability effects on event-related potentials during reading. Brain Research , 1084 , 89 – 103. CrossrefGoogle Scholar

  • Das, T. , Padakannaya, P. , Pugh, K. R. & Singh, N. C. (2011). Neuroimaging reveals dual routes to reading in simultaneous proficient readers of two orthographies. NeuroImage , 54 , 1476 – 1487. CrossrefGoogle Scholar

  • Dehaene, S. , Le Clec'H, G. , Poline, J.-B. , Le Bihan, D. & Cohen, L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. Neuroreport , 13 (3), 321 – 325. CrossrefGoogle Scholar

  • Dimigen, O. , Sommer, W. , Hohlfeld, A. , Jacobs, A. M. & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: Analyses and review, Journal of Experimental Psychology: General , 140 (4), 552 – 572. CrossrefGoogle Scholar

  • Forster, K. I. & Shen, D. (1996). No enemies in the neighborhood: Absence of inhibitory neighborhood effects in lexical decision and semantic categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition , 22 (3), 696 – 713. CrossrefGoogle Scholar

  • Frederiksen, J. R. (1978). Assessment of lexical decoding and lexical skills and their relation to reading proficiency. In A. M. Lesgold, J. W. Pellegrino, S. D. Fokkema & R. Glaser (Eds.), Cognitive Psychology and Instruction (pp. 153 – 169). New York: Plenum. CrossrefGoogle Scholar

  • Frith, U. , Wimmer, H. & Landerl, K. (1998). Differences in phonological recoding in German- and English-speaking children. Scientific Studies of Reading , 2 (1), 31 – 54. CrossrefGoogle Scholar

  • Glaser, W. R. (1992). Picture naming. Cognition , 42 (1 – 3), 61 – 105. CrossrefGoogle Scholar

  • Grainger, J. (1990). Word frequency and neighborhood frequency effects in lexical decision and naming. Journal of Memory and Language , 29 (2), 228 – 244. CrossrefGoogle Scholar

  • Grainger, J. & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and Linguistics Compass , 3 (1), 128 – 156. CrossrefGoogle Scholar

  • Grainger, J. & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review , 103 (3), 518 – 565. CrossrefGoogle Scholar

  • Grainger, J. , O'Regan, J. K. , Jacobs, A. M. , & Segui, J. (1989). On the role of competing word units in visual word recognition: The neighborhood frequency effect. Perception & Psychophysics , 45 (3), 189 – 195. CrossrefGoogle Scholar

  • Hauk, O. & Pulvermüller, F. (2004). Effects of word length and frequency on the human event-related potential. Clinical Neurophysiology , 115 , 1090 – 1103. CrossrefGoogle Scholar

  • Heine, A. , Engl, V. , Thaler, V. M. , Fussenegger, B. & Jacobs, A. M. (2012). Neuropsychologie von Entwicklungsstörungen schulischer Fertigkeiten . Göttingen: Hogrefe. Google Scholar

  • Heister, J. , Würzner, K.-M. , Bubenzer, J. , Pohl, E. , Hanneforth, T. , Geyken, A. et al. (2011). dlexDB – eine lexikalische Datenbank für die psychologische und linguistische Forschung. Psychologische Rundschau , 62 (1), 10 – 20. LinkGoogle Scholar

  • Hofmann, M. J. , Kuchinke, L. , Biemann, C. , Tamm, S. & Jacobs, A. M. (2011). Remembering words in context as predicted by an associative read-out model. Frontiers in Psychology , 2 , 252-252. CrossrefGoogle Scholar

  • Howes, D. H. & Solomon, R. L. (1951). Visual duration threshold as a function of word-probability. Journal of Experimental Psychology , 41 (6), 401 – 410. CrossrefGoogle Scholar

  • Hutzler, F. , Braun, M. , Võ, M. L.-H. , Engl, V. , Hofmann, M. , Dambacher, M. et al. (2007). Welcome to the real world: Validating fixation-related brain potentials for ecologically valid settings. Brain Research , 1172 , 124 – 129. CrossrefGoogle Scholar

  • Jacobs, A. M. (2011). Neurokognitive Poetik: Elemente eines Modells des literarischen Lesens (Neurocognitive poetics: elements of a model of literary reading). In R. Schrott & A. M. Jacobs (Eds.), Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren (pp. 492 – 520). München: Hanser. Google Scholar

  • Jacobs, A. M. & Graf, R. (2005). Wortformgedächtnis als intuitive Statistik in Sprachen mit unterschiedlicher Konsistenz. Zeitschrift für Psychologie , 213 (3), 133 – 141. LinkGoogle Scholar

  • Jacobs, A. M. & Grainger, J. (1994). Models of visual word recognition – sampling the state of the art. Perception , 20 , 1311 – 1334. Google Scholar

  • Jacobs, A. M. & Hofmann, M. J. (2013). Neurokognitive Modellierung. In E. Schröger, & S. Koelsch (Hrsg.), Theorie und Forschung (Enzyklopädie der Psychologie, Serie Kognition , Bd. 5 , S. 431 – 444), Göttingen: Hogrefe. Google Scholar

  • Jacobs, A. M. , Rey, A. , Ziegler, J. C. & Grainger, J. (1998). MROM-P: An interactive activation, multiple read-out model of orthographic and phonological processes in visual word recognition. In J. Grainger, J. & A. M. Jacobs (Eds.), Localist connectionist approaches to human cognition (pp. 147 – 187). Mahwah, NJ: Erlbaum. Google Scholar

  • Jacobs, A. M. & Ziegler, J. C. (2014). The neurocognitive psychology of visual word recognition. In J. D. Wright (Editor in Chief), International Encyclopedia of the Social and Behavioral Sciences , (submitted). Amsterdam: Elsevier. Google Scholar

  • Juphard, A. , Carbonnel, S. , Ans, B. & Valdois, S. (2006). Length effect in naming and lexical decision: The multitrace memory model’s account. Current Psychology Letters: Behaviour, Brain & Cognition , 19 (2), 1 – 13. Google Scholar

  • Just, M. A. & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review , 87 (4), 329 – 354. CrossrefGoogle Scholar

  • Kliegl, R. , Dambacher, M. , Dimigen, O. , Jacobs, A. M. & Sommer, W. (2012). Eye movements and brain electric potentials during reading. Psychological Research , 76 , 145 – 158. CrossrefGoogle Scholar

  • Kliegl, R. , Grabner, E. , Rolfs, M. & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology , 16 (1 – 2), 262 – 284. CrossrefGoogle Scholar

  • Laver, G. D. & Burke, D. M. (1993). Why do semantic priming effects increase in old age? A meta-analysis. Psychology and Aging , 8 , 34 – 43. CrossrefGoogle Scholar

  • Lindenberger, U. & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging , 9 (3), 339 – 355. CrossrefGoogle Scholar

  • Lindenberger, U. , Nagel, I. E. , Chicherio, C. , Li, S.-C. , Heekeren, H. R. & Bäckman, L. (2008). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience , 2 (2), 234 – 244. CrossrefGoogle Scholar

  • Madden, D. J. , Langley, L. K. , Denny, L. L. , Turkington, T. G. , Provenzale, J. M. , Hawk, T. C. et al. (2002). Adult age differences in visual word identification: Functional neuroanatomy by positron emission tomography. Brain and Cognition , 49 (3), 297 – 321. CrossrefGoogle Scholar

  • McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review , 88 (5), 375 – 407. CrossrefGoogle Scholar

  • McGinnies, E. , Comer, P. B. & Lacey, O. L. (1952). Visual-recognition thresholds as a function of word length and word frequency. Journal of Experimental Psychology , 44 (2), 65 – 69. CrossrefGoogle Scholar

  • Meyer, B. J. F. , Marsiske, M. & Willis, S. L. (1993). Text processing variables predict the readability of everyday documents read by older adults. Reading Research Quarterly , 28 (3), 235 – 248. CrossrefGoogle Scholar

  • Meyer, B. J. F. & Pollard, C. K. (2006). Applied learning and aging: A closer look at reading. In J. E. Birren and K. Warner Schaie (Eds.) Handbook of the Psychology of Aging , 6th ed. , pp. 233 – 260. New York: Academic Press. Google Scholar

  • New, B. , Ferrand, L. , Pallier, C. & Brysbaert, M. (2006). Reexamining the word length effect in visual word recognition: New evidence from the English Lexicon Project. Psychonomic Bulletin & Review , 13 (1), 45 – 52. CrossrefGoogle Scholar

  • Norris, D. (2009). Putting it all together: A unified account of word recognition and reaction-time distributions. Psychological Review , 116 (1), 207 – 219. CrossrefGoogle Scholar

  • Nuthmann, A. , Engbert, R. & Kliegl, R. (2006). Messung von Blickbewegungen. In J. Funke & P. A. Frensch (Hrsg.), Handbuch der Allgemeinen Psychologie – Kognition (S. 705 – 711). Göttingen: Hogrefe. Google Scholar

  • Paap, K. R. , McDonald, J. E. , Schvaneveldt, R. W. & Noel, R. W. (1987). Frequency and pronounceability in visually presented naming and lexical decision tasks. In M. Coltheart (Ed.), Attention and performance XII: The Psychology of Reading (pp. 221 – 243). Hillsdale, NJ: Lawrence Erlbaum Associates. Google Scholar

  • Perry, C. , Ziegler, J. C. & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review , 114 (2), 273 – 315. CrossrefGoogle Scholar

  • Perry, C. , Ziegler, J. C. & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of reading aloud with the connectionist dual process (CDP++) model. Cognitive Psychology , 61 (2), 106 – 151. CrossrefGoogle Scholar

  • Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage , 62 (2), 816 – 847. CrossrefGoogle Scholar

  • Radach, R. , Günther, T. & Huestegge, L. (2012). Blickbewegungen beim Lesen, Leseentwicklung und Legasthenie. Lernen und Lernstörungen , 1 (3), 185 – 204. LinkGoogle Scholar

  • Ratcliff, R. , McKoon, G. & Verwoerd, M. (1989). A bias interpretation of facilitation in perceptual identification. Journal of Experimental Psychology: Learning, Memory, and Cognition , 15 (3), 378 – 387. CrossrefGoogle Scholar

  • Risse, S. & Kliegl, R. (2011). Investigating age differences in the perceptual span with the N+2-boundary paradigm. Psychology and Aging , 26 , 451 – 460. CrossrefGoogle Scholar

  • Robert, C. & Mathey, S. (2007). Aging and lexical inhibition: The effect of orthographic neighborhood frequency in young and older adults. The Journals of Gerontology. Series B: Psychological Sciences and Social Sciences , 62 (6), 340 – 342. CrossrefGoogle Scholar

  • Samanez-Larkin, G. R. & D'Esposito, M. (2008). Group comparisons: Imaging the aging brain, Social Cognitive and Affective Neuroscience , 3 (3), 290 – 297. CrossrefGoogle Scholar

  • Seymour, P. H. , Aro, M. & Erskine, J. M. (2003). Foundation literacy acquisition in European orthographies. British Journal of Psychology , 94 (2), 143 – 174. CrossrefGoogle Scholar

  • Spieler, D. H. & Balota, D. A. (2000). Factors influencing word naming in younger and older adults. Psychology and Aging , 15 (2), 225 – 231. CrossrefGoogle Scholar

  • Stadtlander, L. M. (1995). Age differences in orthographic and frequency neighborhoods. In P. A. Allen, & Th. R. Bashore (Eds.), Age differences in word and language processing ( Vol. 110 , pp. 72 – 86). Elsevier. CrossrefGoogle Scholar

  • Tainturier, M. J. , Tremblay, M. & Lecours, A. R. (1989). Aging and the word frequency effect: A lexical decision investigation. Neuropsychologia , 27 , 1197 – 1203. CrossrefGoogle Scholar

  • Tainturier, M. J. , Tremblay, M. & Lecours, A. R. (1992). Educational level and the word frequency effect: A lexical decision investigation. Brain and Language , 43 , 460 – 474. CrossrefGoogle Scholar

  • Taler, V. & Jarema, G. (2007). Lexical access in younger and older adults: The case of the mass/count distinction. Canadian Journal of Experimental Psychology , 61 (1), 21 – 34. CrossrefGoogle Scholar

  • Thornton, R. & Light, L. L. (2006). Language comprehension and production in normal aging. In J. E. Birren, K. W. Schaie, R. P. Abeles, M. G. & T. A. Salthouse (Eds.), Handbook of the Psychology of Aging ( 6th ed. , pp. 261 – 287). Burlington: Academic Press. Google Scholar

  • Verhaeghen, P. (2003). Aging and vocabulary scores: A meta-analysis. Psychology and Aging , 18 (2), 332 – 339. CrossrefGoogle Scholar

  • Weekes, B. S. (1997). Differential effects of number of letters on word and nonword naming latency. The Quarterly Journal of Experimental Psychology A , 50 (2), 439 – 456. CrossrefGoogle Scholar

  • Whiting, W. L. , Madden, D. J. , Langley, L. K. , Denny, L. L. , Turkington, T. G. , Provenzale, J. M. et al. (2003). Lexical and sublexical components of age-related changes in neural activation during visual word identification. Journal of Cognitive Neuroscience , 15 (3), 475 – 487. CrossrefGoogle Scholar

  • Wydell, T. N. , Vuorinen, T. , Helenius, P. & Salmelin, R. (2003). Neural correlates of letter-string length and lexicality during reading in a regular orthography. Journal of Cognitive Neuroscience , 15 , 1052 – 1062. CrossrefGoogle Scholar

  • Zacks, R. & Hasher, L. (1997). Cognitive gerontology and attentional inhibition: A reply to Burke and McDowd. The Journals of Gerontology. Series B: Psychological Sciences and Social Sciences , 52 (6), 274 – 283. CrossrefGoogle Scholar

  • Ziegler, J. C. , Bertrand, D. , Tóth, D. , Csépe, V. , Reis, A. , Faísca, L. et al. (2010). Orthographic depth and its impact on universal predictors of reading: A cross-language investigation. Psychological Science , 21 (4), 551 – 559. CrossrefGoogle Scholar

  • Ziegler, J. C. , Castel, C. , Pech-Georgel, C. , George, F. , Alario, F. , Perry, C. et al. (2008). Developmental dyslexia and the dual route model of reading: Simulating individual differences and subtypes. Cognition , 107 (1), 151 – 178. CrossrefGoogle Scholar

  • Ziegler, J. C. & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin , 131 (1), 3 – 29. CrossrefGoogle Scholar

  • Ziegler, J. C. & Goswami, U. (2006). Becoming literate in different languages: Similar problems, different solutions. Developmental Science , 9 (5), 429 – 436. CrossrefGoogle Scholar

  • Ziegler, J. C. , Jacobs, A. M. & Klüppel, D. (2001). Pseudohomophone effects in lexical decision: Still a challenge for current word recognition models. Perception , 27 (3), 547 – 559. Google Scholar

  • Ziegler, J. C. , Rey, A. & Jacobs, A. M. , (1998). Simulating individual word identification thresholds and errors in the fragmentation task. Memory & Cognition , 26 (3), 490 – 501. CrossrefGoogle Scholar

  • Zoccolotti, P. , Luca, M. , Filippo, G. , Judica, A. & Martelli, M. (2008). Reading development in an orthographically regular language: Effects of length, frequency, lexicality and global processing ability. Reading and Writing , 22 , 1053 – 1079. CrossrefGoogle Scholar

  • Zorzi, M. , Houghton, G. & Butterworth, B. (1998). Two routes or one in reading aloud? A connectionist dual-process model, 24 , 1131 – 1161. Google Scholar