Skip to main content
Open AccessRegistered Report

Loud Auditory Distractors Are More Difficult to Ignore After All

A Preregistered Replication Study With Unexpected Results

Published Online:https://doi.org/10.1027/1618-3169/a000554

Abstract. Working memory performance is markedly disrupted when task-irrelevant sound is played during item presentation or retention. In a preregistered replication study, we systematically examined the role of intensity in two types of auditory distraction. The first type of distraction is the changing-state effect (i.e., increased disruption by changing-state relative to steady-state sequences). The second type is the auditory deviant effect (i.e., increased disruption by auditory deviant relative to steady-state sequences). In previous experiments, the changing-state effect was independent of intensity. Whether a deviation in intensity leads to an increase in disruption has not yet been examined. We replicated the classic finding that the increased disruption by changing-state relative to steady-state sequences is independent of intensity. Contrary to previous studies, we found an unexpected main effect of intensity. Steady-state and changing-state sequences presented at 75 dB(A) were more disruptive than presented at 45 dB(A), suggesting that intensity plays a more important role than previously assumed in the disruption of working memory performance. Furthermore, we tested the prediction of the violation of expectancy account, according to which deviant distractors at a lower and higher intensity than the rest of the sequence should be equally disruptive. Our results were consistent with this prediction.

References

  • Alikadij, L., & Röer, J. P. (2021). Preregistration for the project “Loud auditory distractors are more difficult to ignore after all: A preregistered replication study with unexpected results. https://osf.io/6hygj First citation in articleGoogle Scholar

  • Alikadij, L., & Röer, J. P. (2022). Raw data and materials for “Loud auditory distractors are more difficult to ignore after all: A preregistered replication study with unexpected results. https://osf.io/ejx5m/ First citation in articleGoogle Scholar

  • Althen, H., Grimm, S., & Escera, C. (2011). Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS ONE, 6(12), e28522. 10.1371/journal.pone.0028522 First citation in articleCrossref MedlineGoogle Scholar

  • Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database (Release 1) [CD-ROM]. Linguistic Data Consortium, University of Pennsylvania. First citation in articleGoogle Scholar

  • Banbury, S., & Berry, D. C. (1997). Habituation and dishabituation to speech and office noise. Journal of Experimental Psychology: Applied, 3(3), 181–195. 10.1037/1076-898x.3.3.181 First citation in articleCrossrefGoogle Scholar

  • Banbury, S. P., Macken, W. J., Tremblay, S., & Jones, D. M. (2001). Auditory distraction and short-term memory: Phenomena and practical implications. Human Factors: The Journal of the Human Factors and Ergonomics Society, 43(1), 12–29. 10.1518/001872001775992462 First citation in articleCrossrefGoogle Scholar

  • Beaman, C. P. (2005). Auditory distraction from low-intensity noise: A review of the consequences for learning and workplace environments. Applied Cognitive Psychology, 19(8), 1041–1064. 10.1002/acp.1134 First citation in articleCrossrefGoogle Scholar

  • Beaman, C. P., & Jones, D. M. (1997). Role of serial order in the irrelevant speech effect: Tests of the changing-state hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(2), 459–471. 10.1037/0278-7393.23.2.459 First citation in articleCrossrefGoogle Scholar

  • Beaman, C. P., & Röer, J. P. (2009). Learning and failing to learn within immediate memory. In 31st Annual Meeting of the Cognitive Science Society, Austin, Texas, USA (pp. 395–400). First citation in articleGoogle Scholar

  • Bell, R., Mieth, L., Röer, J. P., Troche, S. J., & Buchner, A. (2019). Preregistered replication of the auditory deviant effect: A robust benchmark finding. Journal of Cognition, 2(1), 13. 10.5334/joc.64 First citation in articleCrossrefGoogle Scholar

  • Bell, R., Röer, J. P., & Buchner, A. (2013). Irrelevant speech disrupts item-context binding. Experimental Psychology, 60(5), 376–384. 10.1027/1618-3169/a000212 First citation in articleLinkGoogle Scholar

  • Bell, R., Röer, J. P., Dentale, S., & Buchner, A. (2012). Habituation of the irrelevant sound effect: Evidence for an attentional theory of short-term memory disruption. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 1542–1557. 10.1037/a0028459 First citation in articleCrossref MedlineGoogle Scholar

  • Bell, R., Röer, J. P., Marsh, J. E., Storch, D., & Buchner, A. (2017). The effect of cognitive control on different types of auditory distraction. Experimental Psychology, 64(5), 359–368. 10.1027/1618-3169/a000372 First citation in articleLinkGoogle Scholar

  • Colle, H. A. (1980). Auditory encoding in visual short-term recall: Effects of noise intensity and spatial location. Journal of Verbal Learning and Verbal Behavior, 19(6), 722–735. 10.1016/s0022-5371(80)90403-x First citation in articleCrossrefGoogle Scholar

  • Colle, H. A., & Welsh, A. (1976). Acoustic masking in primary memory. Journal of Verbal Learning and Verbal Behavior, 15(1), 17–31. 10.1016/s0022-5371(76)90003-7 First citation in articleCrossrefGoogle Scholar

  • Dalton, P., & Hughes, R. W. (2014). Auditory attentional capture: Implicit and explicit approaches. Psychological Research, 78(3), 313–320. 10.1007/ s00426-014-0557-5 First citation in articleCrossref MedlineGoogle Scholar

  • Ellermeier, W., & Hellbrück, J. (1998). Is level irrelevant in „irrelevant speech“? Effects of loudness, signal-to-noise ratio, and binaural unmasking. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1406–1414. 10.1037/0096-1523.24.5.1406 First citation in articleCrossref MedlineGoogle Scholar

  • Ellermeier, W., & Zimmer, K. (1997). Individual differences in susceptibility to the “irrelevant speech effect”. The Journal of the Acoustical Society of America, 102(4), 2191–2199. 10.1121/1.419596 First citation in articleCrossref MedlineGoogle Scholar

  • Ellermeier, W., & Zimmer, K. (2014). The psychoacoustics of the irrelevant sound effect. Acoustical Science and Technology, 35(1), 10–16. 10.1250/ast.35.10 First citation in articleCrossrefGoogle Scholar

  • Elliott, E. M. (2002). The irrelevant-speech effect and children: Theoretical implications of developmental change. Memory & Cognition, 30(3), 478–487. 10.3758/bf03194948 First citation in articleCrossref MedlineGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. 10.3758/bf03193146 First citation in articleCrossref MedlineGoogle Scholar

  • Foley, L., Anderson, C. J., & Schutz, M. (2020). Re-Sounding alarms: Designing ergonomic auditory interfaces by embracing musical insights. Healthcare, 8(4), 389. 10.3390/healthcare8040389 First citation in articleCrossrefGoogle Scholar

  • Haapakangas, A., Haka, M., Keskinen, E., & Hongisto, V. (2008). Effect of speech intelligibility on task performance an experimental laboratory study. In B. Griefahn (Ed.), Proceedings of the 9th International Congress on Noise as a Public Health Problem, Foxwoods, Connecticut, USA(pp. 395–401). First citation in articleGoogle Scholar

  • Hughes, R. W. (2014). Auditory distraction: A duplex-mechanism account. PsyCh Journal, 3(1), 30–41. 10.1002/pchj.44 First citation in articleCrossref MedlineGoogle Scholar

  • Hughes, R. W., Hurlstone, M. J., Marsh, J. E., Vachon, F., & Jones, D. M. (2013). Cognitive control of auditory distraction: Impact of task difficulty, foreknowledge, and working memory capacity supports duplex-mechanism account. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 539–553. 10.1037/a0029064 First citation in articleCrossref MedlineGoogle Scholar

  • Hughes, R. W., Vachon, F., & Jones, D. M. (2005). Auditory attentional capture during serial recall: Violations at encoding of an algorithm-based neural model? Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 736–749. 10.1037/0278-7393.31.4.736 First citation in articleCrossref MedlineGoogle Scholar

  • Hughes, R. W., Vachon, F., & Jones, D. M. (2007). Disruption of short-term memory by changing and deviant sounds: Support for a duplex-mechanism account of auditory distraction. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(6), 1050–1061. 10.1037/0278-7393.33.6.1050 First citation in articleCrossref MedlineGoogle Scholar

  • Jacobsen, T., Horenkamp, T., & Schröger, E. (2003). Preattentive memory-based comparison of sound intensity. Audiology and Neurotology, 8(6), 338–346. 10.1159/000073518 First citation in articleCrossref MedlineGoogle Scholar

  • Jones, D., Madden, C., & Miles, C. (1992). Privileged access by irrelevant speech to short-term memory: The role of changing-state. The Quarterly Journal of Experimental Psychology Section A, 44(4), 645–669. 10.1080/14640749208401304 First citation in articleCrossrefGoogle Scholar

  • Körner, U., Röer, J. P., Buchner, A., & Bell, R. (2018). Time of presentation affects auditory distraction: Changing-state and deviant sounds disrupt similar working memory processes. Quarterly Journal of Experimental Psychology, 72(3), 457–471. 10.1177/1747021818758239 First citation in articleCrossref MedlineGoogle Scholar

  • Marsh, J. E., Röer, J. P., Bell, R., & Buchner, A. (2014). Predictability and distraction: Does the neural model represent postcategorical features? PsyCh Journal, 3(1), 58–71. 10.1002/pchj.50 First citation in articleCrossref MedlineGoogle Scholar

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. 10.1016/j.clinph.2007.04.026 First citation in articleCrossref MedlineGoogle Scholar

  • Nöstl, A., Marsh, J. E., & Sörqvist, P. (2012). Expectations modulate the magnitude of attentional capture by auditory events. PLoS ONE, 7(11), e48569. 10.1371/journal.pone.0048569 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B., Elsley, J. V., Andrés, P., & Barceló, F. (2011). Why are auditory novels distracting? Contrasting the roles of novelty, violation of expectation and stimulus change. Cognition, 119(3), 374–380. 10.1016/j.cognition.2011.02.001 First citation in articleCrossref MedlineGoogle Scholar

  • Röer, J. P., Bell, R., & Buchner, A. (2013). Self-relevance increases the irrelevant sound effect: Attentional disruption by one’s own name. Journal of Cognitive Psychology, 25(8), 925–931. 10.1080/20445911.2013.828063 First citation in articleCrossrefGoogle Scholar

  • Röer, J. P., Bell, R., & Buchner, A. (2014a). Evidence for habituation of the irrelevant-sound effect on serial recall. Memory & Cognition, 42(4), 609–621. 10.3758/s13421-013-0381-y First citation in articleCrossref MedlineGoogle Scholar

  • Röer, J. P., Bell, R., & Buchner, A. (2014b). What determines auditory distraction? On the roles of local auditory changes and expectation violations. PLoS ONE, 9(1), e84166. 10.1371/journal.pone.0084166 First citation in articleCrossref MedlineGoogle Scholar

  • Röer, J. P., Bell, R., Dentale, S., & Buchner, A. (2011). The role of habituation and attentional orienting in the disruption of short-term memory performance. Memory & Cognition, 39(5), 839–850. 10.3758/s13421-010-0070-z First citation in articleCrossref MedlineGoogle Scholar

  • Röer, J. P., Bell, R., Körner, U., & Buchner, A. (2019). A semantic mismatch effect on serial recall: Evidence for interlexical processing of irrelevant speech. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(3), 515–525. 10.1037/xlm0000596 First citation in articleCrossref MedlineGoogle Scholar

  • Röer, J. P., Bell, R., Marsh, J. E., & Buchner, A. (2015). Age equivalence in auditory distraction by changing and deviant speech sounds. Psychology and Aging, 30(4), 849–855. 10.1037/pag0000055 First citation in articleCrossref MedlineGoogle Scholar

  • Salamé, P., & Baddeley, A. (1982). Disruption of short-term memory by unattended speech: Implications for the structure of working memory. Journal of Verbal Learning and Verbal Behavior, 21(2), 150–164. 10.1016/s0022-5371(82)90521-7 First citation in articleCrossrefGoogle Scholar

  • Schlittmeier, S. J., Hellbrück, J., Thaden, R., & Vorländer, M. (2008). The impact of background speech varying in intelligibility: Effects on cognitive performance and perceived disturbance. Ergonomics, 51(5), 719–736. 10.1080/00140130701745925 First citation in articleCrossref MedlineGoogle Scholar

  • Shestopalova, L. B., Petropavlovskaia, E. A., Semenova, V. V., & Nikitin, N. I. (2018). Mismatch negativity and psychophysical detection of rising and falling intensity sounds. Biological Psychology, 133, 99–111. 10.1016/j.biopsycho.2018.01.018 First citation in articleCrossref MedlineGoogle Scholar

  • Tremblay, S., & Jones, D. M. (1999). Change of intensity fails to produce an irrelevant sound effect: Implications for the representation of unattended sound. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 1005–1015. 10.1037/0096-1523.25.4.1005 First citation in articleCrossref MedlineGoogle Scholar

  • Tremblay, S., Nicholls, A. P., Alford, D., & Jones, D. M. (2000). The irrelevant sound effect: Does speech play a special role? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 1750–1754. 10.1037/0278-7393.26.6.1750 First citation in articleCrossref MedlineGoogle Scholar

  • Vachon, F., Hughes, R. W., & Jones, D. M. (2012). Broken expectations: Violation of expectancies, not novelty, captures auditory attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 164–177. 10.1037/a0025054 First citation in articleCrossref MedlineGoogle Scholar

  • Vachon, F., Labonté, K., & Marsh, J. E. (2017). Attentional capture by deviant sounds: A noncontingent form of auditory distraction? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 622–634. 10.1037/xlm0000330 First citation in articleCrossref MedlineGoogle Scholar

  • Vachon, F., Marsh, J. E., & Labonté, K. (2020). The automaticity of semantic processing revisited: Auditory distraction by a categorical deviation. Journal of Experimental Psychology: General, 149(7), 1360–1397. 10.1037/xge0000714 First citation in articleCrossref MedlineGoogle Scholar