Skip to main content
Originalia

Malfunctional Reorganization in the Developing Limbo-Prefrontal System in Animals: Implications for Human Psychoses?

Published Online:https://doi.org/10.1024//1016-264X.12.1.8

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Dysfunktionale Reorganisation in der Entwicklung des limbo-präfrontalen Systems bei Tieren: Bedeutung für psychotische Dekompensation bei Menschen

Zusammenfassung: Die Ausweitung der experimentellen Plastizitätsforschung auf psycho-kognitive Systeme des Gehirns und der Einsatz von nichtinvasiven Methoden am Tiermodell (Meriones unguiculatus) bieten erstmalig einen Brückenschlag zur Klinischen Psychologie und zur Psychiatrie. Die restriktive versus semi-natürliche Aufzucht und der systemische Einsatz von Methamphetamin werden im Zusammenhang mit der sehr langsamen Dopaminreifung als jeweils hinreichende Induktoren einer dysfunktionalen Reorganisation im Präfrontalcortex zusätzlich einer Fehlregulation der Neurogenese im hippocampalen Dentatus beschrieben. Wege der Behandlung von psycho-kognitiven Entwicklungsstörungen erwachsen aus der Erkenntnis, daß sich diese Dyskonnektion des limbo-präfrontalen Schaltkreises über die Neurogenese (pharmakologigch/therapeutisch) als adaptiv erweist.

Literatur

  • Blaesing, B., Nossoll, M., Teuchert-Noodt, G., Dawirs, R.R. (2001). Postnatal maturation of prefrontal pyramidal neurones is sensitive to a single early dose of methamphetamine in gerbils (Meriones unguiculatus).. Journal of Neural Transmission, 108, 101–113. First citation in articleCrossrefGoogle Scholar

  • Cameron, H.A., Hazel, T.G., Mc Kay, R.D.G. (1998). Regulation of neurogenesis by growth factors and neurotransmitters.. Journal of Neurobiology, 36, 287–306. First citation in articleCrossrefGoogle Scholar

  • Cowan, W.M., Stanfield, B.B., Kishi, K. (1980). The development of the dentate gyrus.. In R.K. Hunt (Ed.), Current topics in developmental biology. Neural development 1 Emergence of specificity in neural histogenesis (pp.103-157). New York: Academic Press.. First citation in articleGoogle Scholar

  • Dawirs, R.R. (1993a). Spontan und experimentell induzierte Neuroplastizität: Ausdruck eines allgemeinen Prinzips adaptiver Entwicklungsstrategien des Nervensystems.. Habil.-Schrift, Bielefeld.. First citation in articleGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Czaniera, R (1993b). Maturation of the dopamine innervation during postnatal development of the prefrontal cortex in gerbils (Meriones unguiculatus). A quantitative immunocytochemical study.. Journal für Hirnforschung, 34, 281–291. First citation in articleGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Kacza, J. (1992). Naturally occurring degrading events in axon terminals of the dentate gyrus and stratum lucidum in the spiny mouse (Acomys cahirinus) during maturation, adulthood and aging.. Developmental Neuroscience, 14, 210–220. First citation in articleCrossrefGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Molthagen, M. (1993c). Indication of methamphetamine-induced reactive synaptogenesis in the prefrontal cortex of gerbils (Meriones unguiculatus).. European Journal of Pharmacology, 241, 89–97. First citation in articleCrossrefGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Czaniera, R. (1994). The postnatal maturation of dopamine innervation in the prefrontal cortex of gerbils (Meriones unguiculatus) is sensitive to an early single dose of methamphetamine. A quantitative immunocytochemical study.. Journal of Brain Research, 35, 195–204. First citation in articleGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Czaniera, R. (1996). Ontogeny of PFC-related behaviors is sensitive to a single non-invasive dose of methamphetamine in neonatal gerbils (Meriones unguiculatus).. Journal of Neural Transmission, 103, 1235–1245. First citation in articleCrossrefGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Nossoll, M. (1997). Pharmacologically induced neural plasticity in the prefrontal cortex of adult gerbils (Meriones unguiculatus).. European Journal of Pharmacology, 327, 117–123. First citation in articleCrossrefGoogle Scholar

  • Dawirs, R.R., Hildebrandt, K., Teuchert-Noodt, G. (1998). Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus.. Journal of Neural Transmission, 105, 317–327. First citation in articleCrossrefGoogle Scholar

  • Dawirs, R.R., Teuchert-Noodt, G., Hildebrandt, K., Fei, F. (2000). Granule cell proliferation and axon terminal degradation in the dentate gyrus of gerbils (Meriones unguiculatus) during maturation, adulthood and aging.. Journal of Neural Transmission, 107, 639–647. First citation in articleCrossrefGoogle Scholar

  • De Bruin, J.P.C. (1990). Social behavior and the prefrontal cortex.. In H.B.M. Uylings, C.G. Van Eden, J.P.C. De Bruin, M.A. Corner, & M.G.P. Feenstra (Eds.), Progress in brain research (Vol.85, pp.485-497). Amsterdam, New York, Oxford: Elsevier.. First citation in articleGoogle Scholar

  • Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., Gage, F.H. (1998). Neurogenesis in adult human hippocampus.. Nature Medicine, 4, 1313–1317. First citation in articleCrossrefGoogle Scholar

  • Frotscher, M., Heimrich, B., Deller, T., Nitsch, R. (1995). Understanding the cortex through the hippocampus: Lamina-specific connections of the rat hippocampal neurons.. Journal of Anatomy, 187, 539–545. First citation in articleGoogle Scholar

  • Fuster, J.M. (1991). The prefrontal cortex and its relation to behavior.. Progress in Brain Research, 87, 201–211. First citation in articleCrossrefGoogle Scholar

  • Goldman-Rakic, P.S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory.. In F. Blum (Ed.), Handbook of physiology. The nervous system, higher functions of the brain (V) (pp.373-417). Bethesda, MD: Am Physiol Soc.. First citation in articleGoogle Scholar

  • Hassenstein, B. (1973). Verhaltensbiologie des Kindes (p. 59).. München: Piper.. First citation in articleGoogle Scholar

  • Hildebrandt, K., Teuchert-Noodt, G., Dawirs, R.R. (1999). A single neonatal dose of methamphetamine suppresses dentate granule cell proliferation in adult gerbils which is restored to control values by acute doses of haloperidol.. Journal of Neural Transmission, 22, 549–558. First citation in articleCrossrefGoogle Scholar

  • Hubel, D.H., Wiesel, T.N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens.. Journal of Physiology, 206, 419–436. First citation in articleCrossrefGoogle Scholar

  • Immelmann, K., Suomi, S.J. (1979). Sensitive phases in development.. In K. Immelmann, G.W. Barlow, M. Main, & L. Petrinovich (Eds.), Behavioral development. The Bielefeld interdisciplinary project (p.834). New York: Cambridge University Press.. First citation in articleGoogle Scholar

  • Kalsbeek, A., Buijs, R.M., Hofman, M.A., Matthijssen, M.A., Pool, C.W., Uylings, H.B. (1987). Effects of neonatal thermal lesioning of the mesocortical dopaminergic projection on the development of the rat prefrontal cortex.. Brain Research, 429, 123–32. First citation in articleCrossrefGoogle Scholar

  • Kalsbeek, A., Voorn, P., Buijs, R.M., Pool, C.W., Uylings, H.B.M. (1988). Development of the dopaminergic innervation in the prefrontal cortex of the rat.. Journal of Comparative Neurology, 269, 58–72. First citation in articleCrossrefGoogle Scholar

  • Kalsbeek, A., Matthijssen, M.A., Uylings, H.B. (1989). Morphometric analysis of prefrontal cortical development following neonatal lesioning of the dopaminergic mesocortical projection.. Experimental Brain Research, 78, 279–289. First citation in articleCrossrefGoogle Scholar

  • Kalsbeek, A., De Bruin, J.P., Feenstra, M.G., Uylings, H.B. (1990). Age-dependent effects of lesioning the mesocortical dopamine system upon prefrontal cortex morphometry and PFC-related behaviors.. Progress in Brain Research, 85, 257–282. First citation in articleCrossrefGoogle Scholar

  • Kater, S.B., Lipton, S.A. (1995). Neurotransmitter regulation of neuronal outgrowth, plasticity and survival in the year 2001.. Trends in Neuroscience, 18, 71–72. First citation in articleCrossrefGoogle Scholar

  • Kolb, B., Whishaw, I.Q. (1993). Neuropsychologie.. Heidelberg, Berlin, Oxford: Spektrum, Akademischer Verlag.. First citation in articleGoogle Scholar

  • Lauder, J.M. (1988). Neurotransmitters as morphogens.. In G.J. Boer, M.G.P. Feenstra, M. Mirmiran, D.F. Swaab, & F. Van Haaren (Eds.), Progress in brain research (pp.365-387). Amsterdam, New York, Oxford: Elsevier Sc (Biom Div), 73.. First citation in articleCrossrefGoogle Scholar

  • Nadel, L., Moscovitch, M. (1998). Hippocampal contributions to cortical plasticity.. Neuropharmacology, 37, 431–439. First citation in articleCrossrefGoogle Scholar

  • Nossoll, M., Teuchert-Noodt, G., Dawirs, R.R. (1997). A single dose of methamphetamine in neonatal gerbils affects adult prefrontal GABA innervation.. European Journal of Pharmacology, 340, 3–5. First citation in articleGoogle Scholar

  • Poeggel, G., Lange, E., Hase, C., Methger, M., Gulyayeva, N., Braun, K. (1999). Maternal separation and early social deprivation in Octodon degus: Quantitative changes of nicotinamide adenine dinucleotide phosphate-diaphorase-reactive neurons in the prefrontal cortex and nucleus accumbens.. Neuroscience, 94, 497–504. First citation in articleCrossrefGoogle Scholar

  • Rosenzweig, M.R., Bennett, E.L. (1996). Psychobiology of plasticity: Effects of training and experience on brain and behavior.. Behavioural Brain Research, 78, 57–65. First citation in articleCrossrefGoogle Scholar

  • Teuchert-Noodt, G., Dawirs, R.R. (1991). Age-related toxicity in prefrontal cortex and caudate putamen complex of gerbils (Meriones unguiculatus) after a single dose of methamphetamine.. Neuropharmacology, 30, 733–743. First citation in articleCrossrefGoogle Scholar

  • Teuchert-Noodt, G., Dawirs, R.R. (1998). Beeinflussung der Hirnreifung durch psychoaktive Substanzen im Tiermodell.. In J.M. Fegert, F. Häßler, & S. Rothärmel (Eds.), Atypische Neuroleptika in der Jugendpsychiatrie (pp.111-122). Stuttgart, New York: Schattauer.. First citation in articleGoogle Scholar

  • Teuchert-Noodt, G., Dawirs, R.R., Hildebrandt, K. (2000). Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus.. Journal of Neural Transmission, 107, 133–143. First citation in articleCrossrefGoogle Scholar

  • Thierry, A.M., Godbout, R., Mantz, J., Glowinski, J. (1990). Influence of the ascending monoaminergic systems on the activity of the rat prefrontal cortex.. In H.B.M Uylings, C.G. Van Eden, J.P.C. De Bruin, M.A. Corner, & M.G.P. Feenstra (Eds.), The prefrontal cortex. Progress in Brain Research (Vol.85, pp.357-365). Amsterdam: Elsevier, Amsterdam.. First citation in articleGoogle Scholar

  • Winterfeldt, K.T., Teuchert-Noodt, G., Dawirs, R.R. (1998). Social environment alters both ontogeny of dopamine innervation of the medial prefrontal cortex and maturation of working memory in gerbils (Meriones unguiculatus).. Journal of Neuroscience Research, 52, 201–209. First citation in articleCrossrefGoogle Scholar

  • Wolff, J.R., Wagner, G.P. (1983). Selforganization in synaptogenesis: Interaction between the formation of excitatory and inhibitory synapses.. In F. Basar, H. Haken, & A.J. Mandell (Eds.), Synergetics of the brain (pp.50-59). Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.. First citation in articleGoogle Scholar

  • Wolff, J.R., Leutgeb, U., Holzgraefe, M., Teuchert, G. (1989). Synaptic remodeling during primary and reactive synaptogenesis.. In H. Rahmann (Ed.), Fundamentals of memory formation. Neuronal plasticity and brain function (pp.69-82). Stuttgart: Fischer.. First citation in articleGoogle Scholar