Skip to main content
Original Communication

Q10 Coenzyme Supplementation can Improve Oxidative Stress Response to Exercise in Metabolic Syndrome in Rats

Published Online:https://doi.org/10.1024/0300-9831/a000301

Abstract.Background: The metabolic syndrome leads to high morbidity and mortality. Almost all pathological states are associated with oxidative stress (OS) disorders. This study evaluates the effects of Coenzyme Q10 (CoQ10) supplementation on different lifestyles, in relation to serum and tissue OS parameters. Materials and methods: Twelve Wistar rat groups (10 rats/group) were equally divided in three types of diets: standard (St), high fat (HF), high sugar (HS); within each diet group there was one sedentary group with CoQ10 supplementation (100 mg/kg body weight), one sedentary without CoQ10, one trained group with CoQ10 and one trained group without CoQ10 supplementation. After 28 days blood samples were collected as follows: after 12 hours of fasting (T0), 1 hour postprandial (T1) and after 1 hour of exercise (T2) or sedentary postprandial time (T3). Thiol groups (SH) and malondialdehyde (MDA) were determined from serum and liver homogenate. Results: Significant changes were observed in fasting MDA for HF (p = 0.024 for training, 0.028 for CoQ10). Postprandial, OS status altered, with highest MDA in HF sedentary non-CoQ10 group (3.92 ± 0.37 vs 2.67 ± 0.41 nmol/ml in St trained CoQ10). At T2 the untrained and non-CoQ10 groups had the highest MDA levels (up to 22.3% vs T1, p < 0.001 in HF) as SH dropped (34.4% decrease vs T1, p < 0.001 in HF). At T3 high MDA levels were observed, correlated with low SH (Pearson r = −0.423 overall), irrespective of the CoQ10 supplementation. CoQ10 improved the liver OS status (MDA and SH decreased), but not the exercise, in all diets. Conclusions: CoQ10 supplementation accompanied by chronic exercise improved the OS serum profile, irrespective of the daily diet. CoQ10 lowered liver MDA and SH concentrations.

References

  • 1 Patel, V.P., & Chu, C.T. (2011) Nuclear transport, oxidative stress, and neurodegeneration. Int J Clin Exp Pathol. 4, 215–229. First citation in articleMedlineGoogle Scholar

  • 2 Forsberg, E., Xu, C., Grünler, J., Frostegård, J., Tekle, M., Brismar, K., & Kärvested, L. (2015) Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. J Diabetes Complications. 29, 1152–1158. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Niklowitz, P., Onur, S., Fischer, A., Laudes, M., Palussen, M., Menke, T., & Döring, F. (2016) Coenzyme Q10 serum concentration and redox status in European adults: influence of age, sex, and lipoprotein concentration. J Clin Biochem Nutr. 58, 240–245. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Ramond, A., Godin-Ribuot, D., Ribuot, C., Totoson, P., Koritchneva, I., Cachot, S., Levy, P., & Joyeux-Faure, M. (2011) Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol. 27, 252–261. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Alehagen, U., Alexander, J., & Aaseth, J. (2016) Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial. PLoS One. 11, e0157541. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Gems, D., & Partridge, L. (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab. 7, 200–203. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Fong, J.J., & Rhoney, D.H. (2006) NXY-059: review of neuroprotective potential for acute stroke. Ann Pharmacother. 40, 461–471. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Pryor, W.A. (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med. 28, 141–164. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Kaur, J. (2014) A comprehensive Review on metabolic syndrome. Cardiology Research and Practice. 2014, 943162. doi: 10.1155/2014/943162 First citation in articleCrossref MedlineGoogle Scholar

  • 10 Bell, D.S., O’Keefe, J.H., & Jellinger, P. (2008) Postprandial dysmetabolism: the missing link between diabetes and cardiovascular events? Endocr Pract. 14, 112–124. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Garber, A.J. (2012) Postprandial dysmetabolism and the heart. Heart Fail Clin. 8, 563–573. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Nordmann, A.J., Nordmann, A., Briel, M., Keller, U., Yancy, W.S. Jr, Brehm, B.J., & Bucher, H.C. (2006) Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med. 166, 285–293. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Bellinger, A.M., Reiken, S., Dura, M., Murphy, P.W., Deng, S.X., Landry, D.W., Nieman, D., Lehnart, S.E., Samaru, M., La Campagne, A., & Marks, A.R. (2008) Remodeling of ryanodine receptor complex causes “leaky” channels: A molecular mechanism for decreased exercise capacity. Proceedings of the National Academy of Sciences of the United States of America. 105, 2198–2202. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Sies, H. (1997) Oxidative stress. Oxidants and antioxidants. Experim Physiol. 82, 291–295. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Radak, Z., Suzuki, K., Higuchi, M., Balogh, L., Boldogh, I., & Koltai, E. (2016) Physical exercise, reactive oxygen species and neuroprotection. Free Radical Biology and Medicine. 98, 187–196. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Ercan, H., Kiyici, A., Marakoglu, K., & Oncel, M. (2016) 8-Isoprostane and Coenzyme Q10 Levels in Patients with Metabolic Syndrome. Metab Syndr Relat Disord. 14, 318–321. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Raygan, F., Rezavandi, Z., Dadkhah Tehrani, S., Farrokhian, A., & Asemi, Z. (2016) The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. Eur J Nutr. 55, 2357–2364. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Cicero, A.F., Morbini, M., Rosticci, M., D’addato, S., Grandi, E., & Borghi, C. (2016) Middle-term dietary supplementation with red yeast rice plus coenzyme Q10 improves lipid pattern, endothelial reactivity and arterial stiffness in moderately hypercholesterolemics. J Hypertens. 34, e109–e110. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Hosoe, K., Kitano, M., Kishida, H., Kubo, H., Fujii, K., & Kitahara, M. (2007) Study on safety and bioavailability of ubiquinol (Kaneka QHTM) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 47, 19–28. First citation in articleCrossref MedlineGoogle Scholar

  • 20 The University of Texas at Austin. Institutional Animal Care and Use Committee: Guidelines for the Use of Cervical Dislocation for Rodent Euthanasia. http://www.utexas.edu/research/rsc/iacuc/forms/guideline04.pdf First citation in articleGoogle Scholar

  • 21 Kregel, K.C. (2006) Exercise protocols using rats and mice. In American phisiology Society: Resource book for the design of animal exercise protocols (pp. 23–57). http://www.the-aps.org/mm/SciencePolicy/AnimalResearch/Publications/Animal-Exercise-Protocols/book14824.pdf First citation in articleGoogle Scholar

  • 22 Alberti, K.G.M.M., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K.A., Fruchart, J.C., James, W.P.T., Loria, C.M., & Smith, S.C. (2009) Harmonizing the Metabolic Syndrome. Circulation. 120, 1640–1645. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Esterbauer, H., & Chjeeseman, K. (1994) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. In Met in Enzymol. 186, 406–413. First citation in articleGoogle Scholar

  • 24 Hu, M.L. (1994) Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology (vol. 233, pp. 380–384). Academic Press. First citation in articleGoogle Scholar

  • 25 Kitabchi, A.E., McDaniel, K.A., Jim, Y., Wan, R.D., Tylavsky, F.A., Jacovino, C.A., Sands, C.W., Nyenwe, E.A., & Stents, F.B. (2013) Effects of High-Protein Versus High-Carbohydrate Diets on Markers of β-Cell Function, Oxidative Stress, Lipid peroxidation, Proinflammatory Cytokines, and Adipokines in Obese, Premenopausal Women Without Diabetes. A randomized controlled trial. Diabetes Care. 36, 1919–1925. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Moazen, M., Mazloom, Z., Ahmadi, A., Dabbaghmanesh, M.H., & Roosta, S. (2015) Effect of coenzyme Q10 on glycaemic control, oxidative stress and adiponectin in type 2 diabetes. J Pak Med Assoc. 65, 404–408. First citation in articleMedlineGoogle Scholar

  • 27 Fatani, S.H., Babakr, A.T., NourEldin, E.M., & Almarzouki, A.A. (2016) Lipid peroxidation is associated with poor control of type-2 diabetes mellitus. Diabetes Metab Syndr. 10, S64–S67. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Fisher-Wellman, K.H., & Bloomer, R.J. (2010) Lack of effect of a high-calorie dextrose or maltodextrin meal on postprandial oxidative stress in healthy young men. Int J Sport Nutr Exerc Metab. 20, 393–400. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Leeuwenburgh, C., & Heinecke, J.W. (2001) Oxidative stress and antioxidants in exercise. Curr Med Chem. 8, 829–838. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Chiş, B.A., Giurgea, N., Daicoviciu, D., & Mureşan, A. (2011) Oxidative stress implications in exercise physiology in experimental induced postprandial dismetabolism. Clujul Medical. 84, 23–27. First citation in articleGoogle Scholar

  • 31 Ji, L.L. (2008) Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med. 44, 142–152. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Di Massimo, C., Scarpelli, P., & Tozzi-Ciancarelli, M.G. (2004) Possible involvement of oxidative stress in exercise mediated platelet activation. Clin Hemorheol Microcirc. 30, 313–316. First citation in articleMedlineGoogle Scholar

  • 33 Cooke, M., Iosia, M., Buford, T., Shelmadine, B., Hudson, G., Kerksick, C., Rasmussen, C., Greenwood, M., Leutholtz, B., Willoughby, D., & Kreider, R. (2008) Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J Int Soc of Sports Nutr. 8. doi: 10.1186/1550-2783-5-8 First citation in articleCrossrefGoogle Scholar

  • 34 Milne, G.L., Yin, H., Brooks, J.D., Sanchez, S., Jackson Roberts, L. 2nd, & Morrow, J.D. (2007) Quantification of F2-isoprostanes in biological fluids as a measure of oxidative stress. Methods Enzymol. 433, 113–126. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Yubero-Serrano, E.M., Delgado-Casado, N., Delgado-Lista, J., Perez-Martinez, P., Tasset-Cuevas, I., Santos-Gonzalez, M., Caballero, J., Garcia-Rios, A., Marin, C., Gutierrez-Mariscal, F.M., Fuentes, F., Villalba, J.M., Tunez, I., Perez-Jimenez, F., & Lopez-Miranda, J. (2011) Postprandial antioxidant effect of the Mediterranean diet supplemented with coenzyme Q10 in elderly men and women. Age (Dordr). 33, 579–590. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Yubero-Serrano, E.M., Gonzalez-Guardia, L., Rangel-Zuñiga, O., Delgado-Casado, N., Delgado-Lista, J., Perez-Martinez, P., Garcia-Rios, A., Caballero, J., Marin, C., Gutierrez-Mariscal, F.M., Tinahones, F.J., Villalba, J.M., Tunez, I., Perez-Jimenez, F., & Lopez-Miranda, J. (2013) Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q(10) in elderly men and women. Age (Dordr). 35, 159–170. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Liu, Y., Song, A., Zang, S., Wang, C., Song, G., Li, X., Zhu, Y., Yu, X., Li, L., Wang, Y., & Duan, L. (2015) Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats. J Ethnopharmacol. 162, 244–252. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Milagro, F.I., Campión, J., & Martínez, J.A. (2006) Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity. 14, 1118–1123. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Boutcher, S.H. (2011) High-Intensity Intermittent Exercise and Fat Loss. Journal of Obesity. 868305. doi: 10.1155/2011/868305 First citation in articleCrossref MedlineGoogle Scholar

  • 40 Munshi, R.P., Joshi, S.G., & Rane, B.N. (2014) Development of an experimental diet model in rats to study hyperlipidemia and insulin resistance, markers for coronary heart disease. Indian Journal of Pharmacology. 46, 270–276. First citation in articleCrossref MedlineGoogle Scholar