Skip to main content
Original Communication

Vitamin D3 supplementation improves serum SFRP5 and Wnt5a levels in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial

Published Online:https://doi.org/10.1024/0300-9831/a000509

Abstract.Objective: To explore the effect of vitamin D3 on novel serum adipokines, secreted frizzled-related protein 5 (SFRP5) and Wingless-Type MMTV Integration Site Family Member 5a (Wnt5a) levels in Type 2 Diabetes Mellitus (T2DM) patients. Methods: Forty patients (16 women and 24 men) with type 2 diabetes participated in this double-blind, randomized, placebo-controlled clinical trial study. Participants were randomly assigned to receive 4000 IU vitamin D3 (n = 20) or placebo (n = 20) daily for 2 months. Anthropometric indices, fasting blood glucose (FBS), hemoglobin A1c (HbA1c), insulin, serum tumor necrosis factor (TNF)-α, Wnt5a, SFRP5, physical activity, lipid profile, dietary intake, and serum calcidiol were assessed at the baseline and after 8 weeks. Results: In the group receiving Vitamin D, a significant increase in Calicidiol (15.03 ± 10.44 vs. 27.33 ± 11.2 ng/dl; P = < 0.001), SFRP5 (3.6 ± 0.46 vs. 3.98 ± 0.59 ng/ml; P = 0.01), and Wnt5a (0.33 ± 0.129 vs. 0.29 ± 0.047; P = 0.03) was observed. After two months supplementation, there were significant between-group differences in Calicidiol (27.33 ± 11.2 vs. 17.9 ± 12.95 ng/dl; P = 0.01), TNF-α (89.22 ± 34.28 vs. 164.93 ± 120.45 ng/ml; P = 0.006), Wnt5a (0.29 ± 0.047 vs. 0.33 ± 0.09; P = 0.04), and HbA1c (6.6 ± 0.96 % vs. 7.64 ± 1.15 %; p = 0.002). Moreover, the net changes (end – baseline) of Calicidiol (P = < 0.001), SFRP5 (P = 0.04), Wnt5a (P = 0.005), TNF-α (P = 0.01), insulin (P = 0.03), and QUICKI (P = 0.01) was significant between the groups. There were no significant effects on FBS and homeostasis model of assessment-estimated insulin resistance (HOMA-IR). Conclusion: 8 weeks of vitamin D3 supplementation for patients with type 2 diabetes may increase serum anti-inflammatory adipokine SFRP5 but decrease serum pro-inflammatory Wnt5a and TNF-α.

Literature

  • Shaw, J. E., R. A. Sicree, and P. Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 Shaw, J. E., Sicree, R. A. and Zimmet, P. Z. (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 87, 4–14. First citation in articleCrossrefGoogle Scholar

  • Guariguata, L., Whiting, D., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J. (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 103, 137–149. First citation in articleCrossrefGoogle Scholar

  • Lehr, S., Hartwig, S. and Sell, H. (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl. 6, 91. First citation in articleCrossrefGoogle Scholar

  • Wang, C. P., Chung, F. M., Shin, S. J. and Lee, Y. J. (2007) Congenital and environmental factors associated with adipocyte dysregulation as defects of insulin resistance. Rev Diabet Stud. 4, 77–84. First citation in articleCrossrefGoogle Scholar

  • Bloomgarden, Z. T. (2002) Adiposity and diabetes. Diabetes Care. 25, 2342–2349. First citation in articleCrossrefGoogle Scholar

  • Lean, M., Powrie, J., Anderson, A. and Garthwaite P. (1990) Obesity, weight loss and prognosis in type 2 diabetes. Diabet Med. 7, 228–233. First citation in articleCrossrefGoogle Scholar

  • Williamson, D. F., Thompson, T. J., Thun, M., Flanders, D., Pamuk, E. and Byers, T. (2000) Intentional weight loss and mortality among overweight individuals with diabetes. Diabetes Care. 23, 1499–1504. First citation in articleCrossrefGoogle Scholar

  • Ouchi, N., Higuchi, A., Ohashi, K., Oshima, Y., Gokce, N., Shibata, R., Akasaki, Y., Shimono, A. and Walsh, K. (2010) SFRP5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 329, 454–457. First citation in articleCrossrefGoogle Scholar

  • Gustafson, B. and Smith, U. (2006) Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J Biol Chem. 281, 9507–9516. First citation in articleCrossrefGoogle Scholar

  • Lv, C., Jiang, Y., Wang, H. and Chen, B. (2012) SFRP5 expression and secretion in adipocytes are up-regulated during differentiation and are negatively correlated with insulin resistance. Cell Biol Int. 36, 851–855. First citation in articleCrossrefGoogle Scholar

  • Wolden-Kirk, H., Overbergh, L., Christesen, H. T., Brusgaard, K., & Mathieu, C. (2011) Vitamin D and diabetes: its importance for beta cell and immune function. Mol Cell Endocrinol. 347, 106–120. First citation in articleCrossrefGoogle Scholar

  • Giulietti, A., van Etten, E., Overbergh, L., Stoffels, K., Bouillon, R. and Mathieu, C. (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile: 1, 25-Dihydroxyvitamin D3 works as anti-inflammatory. Diabetes Res Clin Pract. 77, 47–57. First citation in articleGoogle Scholar

  • World Health Organization. (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. World Hearth Org. First citation in articleGoogle Scholar

  • Matthews, D., Hosker, J., Rudenski, A., Naylor, B., Treacher, D. and Turner, R. (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28, 412–419. First citation in articleCrossrefGoogle Scholar

  • Hrebicek, J., Janout, V., Malinčíkovä, J., Horäkovä, D. and Čížek, L. k. (2002) Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J Clin Endocrinol MeTab. 87, 144. First citation in articleCrossrefGoogle Scholar

  • Shab-Bidar, S., Neyestani, T. R., Djazayery, A., Eshraghian, M. R., Houshiarrad, A., Gharavi, A. A., Kalayi, A., Shariatzadeh, N., Zahedirad, M., Khalaji, N. and Haidari, H. (2011) Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial. BMC Med. 9, 125. First citation in articleCrossrefGoogle Scholar

  • Nikooyeh, B., Neyestani, T. R., Tayebinejad, N., Alavi-Majd, H., Shariatzadeh, N., Kalayi, A., Zahedirad, M., Heravifard, S. and Salekzamani, S. (2014) Daily intake of vitamin D- or calcium-vitamin D-fortified Persian yogurt drink (doogh) attenuates diabetes-induced oxidative stress: evidence for antioxidative properties of vitamin D. J Hum Nutr. 27, 276–283. First citation in articleCrossrefGoogle Scholar

  • Nasri, H., Behradmanesh S., Maghsoudi, AR., Ahmadi, A, Nasri, P., Rafieian-Kopaei, M. (2014) Efficacy of supplementary vitamin D on improvement of glycemic parameters in patients with type 2 diabetes mellitus; a randomized double blind clinical trial. J Renal Inj Prev. 3, 31–34. First citation in articleGoogle Scholar

  • George, P. S., Pearson, E. R. and Witham, M. D. (2012). Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabet Med. 29. First citation in articleCrossrefGoogle Scholar

  • Ryu, O. H., Lee, S., Yu, J., Choi, M. G., Yoo, H. J. and Mantero, F. (2014). A prospective randomized controlled trial of the effects of vitamin D supplementation on long-term glycemic control in type 2 diabetes mellitus of Korea. Endocr J. 61, 167–176. First citation in articleCrossrefGoogle Scholar

  • Nikooyeh, B., Neyestani, T. R., Tayebinejad, N., Alavi-Majd, H., Shariatzadeh, N., Kalayi, A., Zahedirad, M., Heravifard, S. and Salekzamani, S. (2014) Daily intake of vitamin D-or calcium-vitamin D-fortified Persian yogurt drink (doogh) attenuates diabetes-induced oxidative stress: evidence for antioxidative properties of vitamin D. J Hum Nutr Diet. 27, 276–283. First citation in articleCrossrefGoogle Scholar

  • Haidari, F., Zakerkish, M., Karandish, M., Saki, A. and Pooraziz, S. (2016) Association between serum vitamin D level and glycemic and inflammatory markers in non-obese patients with type 2 diabetes. Iran J Med Sci. 41, 367–373. First citation in articleGoogle Scholar

  • Peterson, C. A. and Heffernan, M. E. (2008) Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. J Inflamm. 5, 10. First citation in articleCrossrefGoogle Scholar

  • Hu, Z., Deng, H., Qu, H. (2013) Plasma SFRP5 levels are decreased in Chinese subjects with obesity and type 2 diabetes and negatively correlated with parameters of insulin resistance. Diabetes Res Clin Pract. 99, 391–395. First citation in articleCrossrefGoogle Scholar

  • Lu, Y. C., Wang, C. P., Hsu, C. C., Chiu, C. A., Yu, T. H., Hung, W. C., Lu, L. F., Chung, F. M., Tsai, I. T., Lin, H. C. and Lee, Y. J. (2013) Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 29, 551–556. First citation in articleGoogle Scholar

  • Carstensen, M., Herder, C., Kempf, K., Erlund, I., Martin, S., Koenig, W., Sundvall, J., Bidel, S., Kuha, S., Roden, M. and Tuomilehto, J. (2013) Sfrp5 correlates with insulin resistance and oxidative stress. Eur J Clin Invest. 43, 350–357. First citation in articleCrossrefGoogle Scholar

  • Hu, W., Li, L., Yang, M., Luo, X., Ran, W., Liu, D., Xiong, Z., Liu, H. and Yang, G. (2013) Circulating Sfrp5 is a signature of obesity-related metabolic disorders and is regulated by glucose and liraglutide in humans. J Clin Endocrinol MeTab. 98, 290–298. First citation in articleCrossrefGoogle Scholar

  • Canivell, S., Rebuffat, S., G Ruano, E., Kostov, B., Sisó-Almirall, A., Novials, A., Ceriello, A. and Gomis, R. (2015) Circulating SFRP5 levels are elevated in drug-naïve recently diagnosed type 2 diabetic patients as compared with prediabetic subjects and controls. Diabetes Metab Res Rev. 31, 212–219. First citation in articleGoogle Scholar

  • Krishnan, A. V. and Feldman, D. (2011) Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol. 51, 311–336. First citation in articleCrossrefGoogle Scholar

  • Giulietti, A., vanEtten, E., Overbergh, L., Stoffels, K., Bouillon, R. and Mathieu, C. (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract. 77, 47–57. First citation in articleCrossrefGoogle Scholar

  • Schulte, D. M., Muller, N., Neumann, K., Oberhauser, F., Faust, M., Gudelhofer, H., Brandt, B., Krone, W. and Laudes, M. (2012) Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PLoS ONE. 7, e32437. First citation in articleCrossrefGoogle Scholar

  • Hu, Z., Deng, H. and Qu, H. (2013) Plasma SFRP5 levels are decreased in Chinese subjects with obesity and type 2 diabetes and negatively correlated with parameters of insulin resistance. Diabetes Res Clin Pract. 99, 391–395. First citation in articleCrossrefGoogle Scholar

  • Lu, Y. C., Wang, C. P., Hsu, C. C., Chiu, C. A., Yu, T. H., Hung, W. C., Lu, L. F., Chung, F. M., Tsai, I. T., Lin, H. C. and et al. (2013) Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 29, 551–556. First citation in articleGoogle Scholar