Skip to main content
Original Communication

Neuroprotective and long term potentiation improving effects of vitamin E in juvenile hypothyroid rats

Published Online:https://doi.org/10.1024/0300-9831/a000533

Abstract. Protective effects of vitamin E (Vit E) on long term potentiation (LTP) impairment, neuronal apoptosis and increase of nitric oxide (NO) metabolites in the hippocampus of juvenile rats were examined. The rats were grouped (n=13) as: (1) control; (2) hypothyroid (Hypo) and (3) Hypo-Vit E. Propylthiouracil (PTU) was given in drinking water (0.05%) during 6 weeks. Vit E (20 mg/ kg) was daily injected (IP). To evaluate synaptic plasticity, LTP from the CA1 area of the hippocampus followed by high frequency stimulation to the ipsilateral Schafer collateral pathway was carried out. The cortical and hippocampal tissues were then removed to measure NO metabolites. The brains of 5 animals in each group were removed for apoptosis study. The hypothyroidism status decreased the slope, 10–90% slope and amplitude of field excitatory post synaptic potential (fEPSP) compared to the control group (P<0.01–P<0.001). Injection of Vit E increased the slope, 10–90% slope and amplitude of the fEPSP in the Hypo-Vit E group in comparison to the Hypo group (P<0.05–P<0.01). TUNEL positive neurons and NO metabolites were higher in the hippocampus of the Hypo rats, as compared to those in the hippocampus of the control ones (P<0.001). Treatment of the Hypo rats by Vit E decreased apoptotic neurons (P<0.01–P<0.001) and NO metabolites (P<0.001) in the hippocampus compared to the Hypo rats. The results of the present study showed that Vit E prevented the LTP impairment and neuronal apoptosis in the hippocampus of juvenile hypothyroid rats.

References

  • 1 Singh, R., Upadhyay, G., & Godbole, M.M. (2003) Hypothyroidism alters mitochondrial morphology and induces release of apoptogenic proteins during rat cerebellar development. J Endocrinol. 176, 321–329. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Kobayashi, K., Tsuji, R., Yoshioka, T., Kushida, M., Yabushita, S., Sasaki, M., Mino, T., & Seki, T. (2005) Effects of hypothyroidism induced by perinatal exposure to PTU on rat behavior and synaptic gene expression. Toxicology. 212, 135–147. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Oppenheimer, J.H., & Schwartz, H.L. (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr Rev. 18, 462–475. First citation in articleMedlineGoogle Scholar

  • 4 Thompson, C.C., & Potter, G.B. (2000) Thyroid hormone action in neural development. Cereb Cortex. 10, 939–945. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Zoeller, T.R., Dowling, A.L.S., Herzig, C.T.A., Iannacone, E.A., Gauger, K.J., & Bansal, R. (2002) Thyroid hormone, brain development, and the environment. Environ Health Perspect. 110, 355–361. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Bernal, J., Guadaño-Ferraz, A., & Morte, B. (2003) Perspectives in the study of thyroid hormone action on brain development and function. Thyroid. 13, 1005–1012. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Huang, X.W., Yin, H.M., Ji, C., Qin, Y.F., Yang, R.W., & Zhao, Z.Y. (2008) Effects of perinatal hypothyroidism on rat behavior and its relation with apoptosis of hippocampus neurons. J Endocrinol Invest. 31, 8–15. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Gerges, N.Z., Alzoubi, K.H., Park, C.R., Diamond, D.M., & Alkadhi, K.A. (2004) Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav Brain Res. 155, 77–84. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Wilcoxon, J.S., Nadolski, G.J., Samarut, J., Chassande, O., & Redei, E.E. (2007) Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor α. Behav Brain Res. 177, 109–116. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Correia, N., Mullally, S., Cooke, G., Tun, T.K., Phelan, N., Feeney, J., Fitzgibbon, M., Boran, G., O’Mara, S., & Gibney, J. (2009) Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism. J Clin Endocrinol Metab. 94, 3789–3797. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Xiao, Q., & Nikodem, V.M. (1998) Apoptosis in the developing cerebellum of the thyroid hormone deficient rat. Front Biosci. 3, A52–57. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Porterfield, S.P., & Hendrich, C.E. (1993) The role of thyroid hormones in prenatal and neonatal neurological development–current perspectives. Endocr Rev. 14, 94–106. First citation in articleMedlineGoogle Scholar

  • 13 Muller, Y., Rocchi, E., Lazaro, J.B., & Clos, J. (1995) Thyroid hormone promotes BCL-2 expression and prevents apoptosis of early differentiating cerebellar granule neurons. Int J Dev Neurosci. 13, 871–885. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Singh, R., Upadhyay, G., Kumar, S., Kapoor, A., Kumar, A., Tiwari, M., & Godbole, M.M. (2003) Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum. J Endocrinol. 176, 39–46. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Niemi, W.D., Slivinski, K., Audi, J., Rej, R., & Carpenter, D.O. (1996) Propylthiouracil treatment reduces long-term potentiation in area CA1 of neonatal rat hippocampus. Neurosci Lett. 210, 127–129. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Gerges, N.Z., Stringer, J.L., & Alkadhi, K.A. (2001) Combination of hypothyroidism and stress abolishes early LTP in the CA1 but not dentate gyrus of hippocampus of adult rats. Brain Res. 922, 250–260. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Gerges, N.Z., & Alkadhi, K.A. (2004) Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus. 14, 40–45. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Gerges, N.Z., Alzoubi, K.H., Park, C.R., Diamond, D.M., & Alkadhi, K.A. (2004) Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav Brain Res. 155, 77–84. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Alzoubi, K.H., Gerges, N.Z., & Alkadhi, K.A. (2005) Levothyroxin restores hypothyroidism-induced impairment of LTP of hippocampal CA1: electrophysiological and molecular studies. Exp Neurol. 195, 330–341. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Gerges, N.Z., Alzoubi, K.H., & Alkadhi, K.A. (2005) Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus. 15, 480–490. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Huang, Y.Y., Kandel, E.R., Varshavsky, L., Brandon, E.P., Qi, M., Idzerda, R.L., McKnight, G.S., & Bourtchouladze, R. (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell. 83, 1211–1222. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Vara, H., Munoz-Cuevas, J., & Colino, A. (2003) Age-dependent alterations of long-term synaptic plasticity in thyroid-deficient rats. Hippocampus. 13, 816–825. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Jeffery, K.J. (1997) LTP and spatial learning – Where to next? Hippocampus. 7, 95–110. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Shors, T.J., & Matzel, L.D. (1997) Long-term potentiation: what’s learning got to do with it? Behav Brain Sci. 20, 597–614. discussion 614-555. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Flora, S.J.S. (2002) Nutritional components modify metal absorption, toxic response and chelation therapy. J Nutr Environ Med. 12, 53–67. First citation in articleCrossrefGoogle Scholar

  • 26 Traber, M.G., & Packer, L. (1995) Vitamin E: beyond antioxidant function. Am J Clin Nutr. 62, 1501S–1509S. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Liebler, D.C. (1993) The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol. 23, 147–169. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Zingg, J.M. (2007) Vitamin E: an overview of major research directions. Mol Aspects Med. 28, 400–422. First citation in articleCrossref MedlineGoogle Scholar

  • 29 El-Shenawy, N.S., MS, A.L.-H., & Hamza, R.Z. (2015) Effect of vitamin E and selenium separately and in combination on biochemical, immunological and histological changes induced by sodium azide in male mice. Exp Toxicol Pathol. 67, 65–76. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Stampfer, M.J., Hennekens, C.H., Manson, J.E., Colditz, G.A., Rosner, B., & Willett, W.C. (1993) Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 328, 1444–1449. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Brigelius-Flohé, R., & Traber, M.G. (1999) Vitamin E: function and metabolism. The FASEB Journal. 13, 1145–1155. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Packer, L., Weber, S.U., & Rimbach, G. (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr. 131, 369s–373s. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Tuzcu, M., & Baydas, G. (2006) Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol. 537, 106–110. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Fukui, K., Onodera, K., Shinkai, T., Suzuki, S., & Urano, S. (2001) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci. 928, 168–175. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Rahaman, S.O., Ghosh, S., Mohanakumar, K.P., Das, S., & Sarkar, P.K. (2001) Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosci Res. 40, 273–279. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Bhanja, S., & Jena, S. (2013) Modulation of antioxidant enzyme expression by PTU-induced hypothyroidism in cerebral cortex of postnatal rat brain. Neurochem Res. 38, 42–49. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Takatsu, H., Owada, K., Abe, K., Nakano, M., & Urano, S. (2009) Effect of vitamin E on learning and memory deficit in aged rats. J Nutr Sci Vitaminol (Tokyo). 55, 389–393. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Fukui, K., Takatsu, H., Shinkai, T., Suzuki, S., Abe, K., & Urano, S. (2005) Appearance of amyloid beta-like substances and delayed-type apoptosis in rat hippocampus CA1 region through aging and oxidative stress. J Alzheimers Dis. 8, 299–309. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Deng, S., Hou, G., Xue, Z., Zhang, L., Zhou, Y., Liu, C., Liu, Y., & Li, Z. (2015) Vitamin E isomer delta-tocopherol enhances the efficiency of neural stem cell differentiation via L-type calcium channel. Neurosci Lett. 585, 166–170. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Zaidi, S.M., & Banu, N. (2004) Antioxidant potential of vitamins A, E and C in modulating oxidative stress in rat brain. Clin Chim Acta. 340, 229–233. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Saadati, H., Sheibani, V., Esmaeili-Mahani, S., Hajali, V., & Mazhari, S. (2014) Prior regular exercise prevents synaptic plasticity impairment in sleep deprived female rats. Brain Res Bull. 108, 100–105. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Piao, M.H., Liu, Y., Wang, Y.S., Qiu, J.P., & Feng, C.S. (2013) Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through alpha4beta2 nAChR subtype-mediated mechanisms. Ann Fr Anesth Reanim. 32, e135–141. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Sadeghian, R., Fereidoni, M., Soukhtanloo, M., Azizi-Malekabadi, H., & Hosseini, M. (2012) Decreased nitric oxide levels in the hippocampus may play a role in learning and memory deficits in ovariectomized rats treated by a high dose of estradiol. Arq Neuropsiquiatr. 70, 874–879. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Azizi-Malekabadi, H., Hosseini, M., Soukhtanloo, M., Sadeghian, R., Fereidoni, M., & Khodabandehloo, F. (2012) Different effects of scopolamine on learning, memory, and nitric oxide metabolite levels in hippocampal tissues of ovariectomized and Sham-operated rats. Arq Neuropsiquiatr. 70, 447–452. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Hosseini, M., Harandizadeh, F., Niazmand, S., Soukhtanloo, M., Faizpour, A., & Ghasemabady, M. (2014) The role for nitric oxide on the effects of hydroalcoholic extract of Achillea wilhelmsii on seizure. Avicenna J Phytomed. 4, 251–259. First citation in articleMedlineGoogle Scholar

  • 46 Ebrahimzadeh Bideskan, A., Mohammadipour, A., Fazel, A., Haghir, H., Rafatpanah, H., Hosseini, M., & Rajabzadeh, A. (2017) Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis. Exp Toxicol Pathol. 69, 329–337. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Ebrahimzadeh Bideskan, A.R., Lale Ataei, M., Mansouri, S., & Hosseini, M. (2015) The effects of tamoxifen and soy on dark neuron production in hippocampal formation after pentylenetetrazole-induced repeated seizures in rats. Pathophysiology. 22, 125–135. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Ebrahimzadeh-Bideskan, A.R., Mansouri, S., Ataei, M.L., Jahanshahi, M., & Hosseini, M. (2018) The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int. 93, 218–230. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Karimzadeh, F., Hosseini, M., Mangeng, D., Alavi, H., Hassanzadeh, G.R., Bayat, M., Jafarian, M., Kazemi, H., & Gorji, A. (2012) Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC Complement Altern Med. 12, 76. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Asiaei, F., Fazel, A., Rajabzadeh, A.A., Hosseini, M., Beheshti, F., & Seghatoleslam, M. (2017) Neuroprotective effects of Nigella sativa extract upon the hippocampus in PTU-induced hypothyroidism juvenile rats: A stereological study. Metab Brain Dis. 32, 1755–1765. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Seghatoleslam, M., Alipour, F., Shafieian, R., Hassanzadeh, Z., Edalatmanesh, M.A., Sadeghnia, H.R., & Hosseini, M. (2016) The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med. 6, 262–268. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Mansouri, S., Ataei, M.L., Hosseini, M., & Bideskan, A.R. (2013) Tamoxifen mimics the effects of endogenous ovarian hormones on repeated seizures induced by pentylenetetrazole in rats. Exp Neurobiol. 22, 116–123. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Baghcheghi, Y., Hosseini, M., Beheshti, F., Salmani, H., & Anaeigoudari, A. (2018) Thymoquinone reverses learning and memory impairments and brain tissue oxidative damage in hypothyroid juvenile rats. Arq Neuropsiquiatr. 76, 32–40. First citation in articleCrossref MedlineGoogle Scholar

  • 54 Khordad, E., Alipour, F., Beheshti, F., Hosseini, M., Rajabzadeh, A.A., Asiaei, F., & Seghatoleslam, M. (2017) Vitamin C prevents hypothyroidism associated neuronal damage in the hippocampus of neonatal and juvenile rats: A stereological study. J Chem Neuroanat. First citation in articleMedlineGoogle Scholar

  • 55 Beheshti, F., Karimi, S., Vafaee, F., Shafei, M.N., Sadeghnia, H.R., Hadjzadeh, M.A.R., & Hosseini, M. (2017) The effects of vitamin C on hypothyroidism-associated learning and memory impairment in juvenile rats. Metab Brain Dis. 32, 703–715. First citation in articleCrossref MedlineGoogle Scholar

  • 56 Beheshti, F., Hosseini, M., Shafei, M.N., Soukhtanloo, M., Ghasemi, S., Vafaee, F., & Zarepoor, L. (2017) The effects of Nigella sativa extract on hypothyroidism-associated learning and memory impairment during neonatal and juvenile growth in rats. Nutr Neurosci. 20, 49–59. First citation in articleCrossref MedlineGoogle Scholar

  • 57 Baghcheghi, Y., Beheshti, F., Shafei, M.N., Salmani, H., Sadeghnia, H.R., Soukhtanloo, M., Anaeigoudari, A., & Hosseini, M. (2017) The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats. Metab Brain Dis. First citation in articleMedlineGoogle Scholar

  • 58 Baghcheghi, Y., Beheshti, F., Salmani, H., Soukhtanloo, M., & Hosseini, M. (2016) Protective effect of PPARgamma agonists on cerebellar tissues oxidative damage in hypothyroid rats. Neurol Res Int. 2016, 1952561. First citation in articleCrossref MedlineGoogle Scholar

  • 59 Hosseini, M., Dastghaib, S.S., Rafatpanah, H., Hadjzadeh, M.A., Nahrevanian, H., & Farrokhi, I. (2010) Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo). 65, 1175–1181. First citation in articleCrossref MedlineGoogle Scholar

  • 60 Xie, Z., & Sastry, B.R. (1995) Impairment of long-term potentiation in rats fed with vitamin E-deficient diet. Brain Res. 681, 193–196. First citation in articleCrossref MedlineGoogle Scholar

  • 61 Salehi, I., Karamian, R., Komaki, A., Tahmasebi, L., Taheri, M., Nazari, M., Shahidi, S., & Sarihi, A. (2015) Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res. 1629, 270–281. First citation in articleCrossref MedlineGoogle Scholar

  • 62 Tagami, M., Yamagata, K., Ikeda, K., Nara, Y., Fujino, H., Kubota, A., Numano, F., & Yamori, Y. (1998) Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab Invest. 78, 1415–1429. First citation in articleMedlineGoogle Scholar

  • 63 Ho, F.Y.F., Tsang, W.P., & Kwok, T.T. (2006) Antioxidant suppression of apoptosis induction by reoxygenation after chronic hypoxia in human hepatocellular HepG2 cells. Cancer Res. 66, 954–955. First citation in articleGoogle Scholar

  • 64 Alzoubi, K.H., Gerges, N.Z., Aleisa, A.M., & Alkadhi, K.A. (2009) Levothyroxin restores hypothyroidism-induced impairment of hippocampus-dependent learning and memory: Behavioral, electrophysiological, and molecular studies. Hippocampus. 19, 66–78. First citation in articleCrossref MedlineGoogle Scholar

  • 65 Subramaniyan, S., Hajali, V., Scherf, T., Sase, S.J., Sialana, F.J., Groger, M., Bennett, K.L., Pollak, A., Li, L., Korz, V., & Lubec, G. (2015) Hippocampal receptor complexes paralleling LTP reinforcement in the spatial memory holeboard test in the rat. Behav Brain Res. 283, 162–174. First citation in articleCrossref MedlineGoogle Scholar

  • 66 Bliss, T.V., & Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 232, 331–356. First citation in articleCrossref MedlineGoogle Scholar

  • 67 Lee, P.R., Brady, D., & Koenig, J.I. (2003) Thyroid hormone regulation of N-methyl-D-aspartic acid receptor subunit mRNA expression in adult brain. J Neuroendocrinol. 15, 87–92. First citation in articleCrossref MedlineGoogle Scholar

  • 68 Alva-Sanchez, C., Becerril, A., Anguiano, B., Aceves, C., & Pacheco-Rosado, J. (2009) Participation of NMDA-glutamatergic receptors in hippocampal neuronal damage caused by adult-onset hypothyroidism. Neurosci Lett. 453, 178–181. First citation in articleCrossref MedlineGoogle Scholar

  • 69 File, S.E., Fluck, E., & Fernandes, C. (1999) Beneficial effects of glycine (bioglycin) on memory and attention in young and middle-aged adults. J Clin Psychopharmacol. 19, 506–512. First citation in articleCrossref MedlineGoogle Scholar

  • 70 Palmer, C., Ellis, K.A., O’Neill, B.V., Croft, R.J., Leung, S., Oliver, C., Wesnes, K.A., & Nathan, P.J. (2008) The cognitive effects of modulating the glycine site of the NMDA receptor with high-dose glycine in healthy controls. Hum Psychopharmacol. 23, 151–159. First citation in articleCrossref MedlineGoogle Scholar

  • 71 Platt, B., Carpenter, D.O., Busselberg, D., Reymann, K.G., & Riedel, G. (1995) Aluminum impairs hippocampal long-term potentiation in rats in vitro and in vivo. Exp Neurol. 134, 73–86. First citation in articleCrossref MedlineGoogle Scholar

  • 72 Zhuo, M. (2003) Synaptic and molecular mechanisms of glutamatergic synapses in pain and memory. Sheng Li Xue Bao. 55, 1–8. First citation in articleMedlineGoogle Scholar

  • 73 Martinez-Villayandre, B., Paniagua, M.A., Fernandez-Lopez, A., & Calvo, P. (2006) Effect of delta-aminolevulinic acid and vitamin E treatments on the N-methyl-D-aspartate receptor at different ages in the striatum of rat brain. Brain Res. 1114, 19–23. First citation in articleCrossref MedlineGoogle Scholar

  • 74 Martin, D.S., Lonergan, P.E., Boland, B., Fogarty, M.P., Brady, M., Horrobin, D.F., Campbell, V.A., & Lynch, M.A. (2002) Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem. 277, 34239–34246. First citation in articleCrossref MedlineGoogle Scholar

  • 75 Liu, M.C., Liu, X.Q., Wang, W., Shen, X.F., Che, H.L., Guo, Y.Y., Zhao, M.G., Chen, J.Y., & Luo, W.J. (2012) Involvement of microglia activation in the lead induced long-term potentiation impairment. PLoS One. 7, e43924. First citation in articleCrossref MedlineGoogle Scholar

  • 76 Zhang, L., Blomgren, K., Kuhn, H.G., & Cooper-Kuhn, C.M. (2009) Effects of postnatal thyroid hormone deficiency on neurogenesis in the juvenile and adult rat. Neurobiol Dis. 34, 366–374. First citation in articleCrossref MedlineGoogle Scholar

  • 77 Cano-Europa, E., Perez-Severiano, F., Vergara, P., Ortiz-Butron, R., Rios, C., Segovia, J., & Pacheco-Rosado, J. (2008) Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis. 23, 275–287. First citation in articleCrossref MedlineGoogle Scholar

  • 78 Evans, P.H. (1993) Free radicals in brain metabolism and pathology. Br Med Bull. 49, 577–587. First citation in articleCrossref MedlineGoogle Scholar

  • 79 De Felice, F.G., Velasco, P.T., Lambert, M.P., Viola, K., Fernandez, S.J., Ferreira, S.T., & Klein, W.L. (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem. 282, 11590–11601. First citation in articleCrossref MedlineGoogle Scholar

  • 80 Baraona, E., Zeballos, G.A., Shoichet, L., Mak, K.M., & Lieber, C.S. (2002) Ethanol consumption increases nitric oxide production in rats, and its peroxynitrite-mediated toxicity is attenuated by polyenylphosphatidylcholine. Alcohol Clin Exp Res. 26, 883–889. First citation in articleCrossref MedlineGoogle Scholar

  • 81 Chabrier, P.E., Demerle-Pallardy, C., & Auguet, M. (1999) Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci. 55, 1029–1035. First citation in articleCrossref MedlineGoogle Scholar

  • 82 Jonnala, R.R., & Buccafusco, J.J. (2001) Inhibition of nerve growth factor signaling by peroxynitrite. J Neurosci Res. 63, 27–34. First citation in articleCrossref MedlineGoogle Scholar

  • 83 Franco, M.C., Antico Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., Lopez, L.M., Romorini, L., Poderoso, J.J., & Carreras, M.C. (2006) Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem. 281, 4779–4786. First citation in articleCrossref MedlineGoogle Scholar

  • 84 Venditti, P., & Meo, S.D. (2006) Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 63, 414–434. First citation in articleCrossref MedlineGoogle Scholar

  • 85 Khanna, S., Roy, S., Ryu, H., Bahadduri, P., Swaan, P.W., Ratan, R.R., & Sen, C.K. (2003) Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem. 278, 43508–43515. First citation in articleCrossref MedlineGoogle Scholar

  • 86 Jolitha, A.B., Subramanyam, M.V., & Asha Devi, S. (2006) Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status. Exp Gerontol. 41, 753–763. First citation in articleCrossref MedlineGoogle Scholar

  • 87 Johnson, R.A., & Mitchell, G.S. (2003) Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: effects of rat strain. Brain Res. 983, 108–114. First citation in articleCrossref MedlineGoogle Scholar

  • 88 Beyer, R.E. (1994) The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr. 26, 349–358. First citation in articleCrossref MedlineGoogle Scholar