Skip to main content
Original Communication

Reduction of paw edema and liver oxidative stress in carrageenan-induced acute inflammation by Lobaria pulmonaria and Parmelia caperata, lichen species, in mice

Published Online:https://doi.org/10.1024/0300-9831/a000620

Abstract. Paw edema volume reduction is a useful marker in determining the anti-inflammatory effect of drugs and plant extracts in carrageenan-induced acute inflammation. In this study, the anti-inflammatory effect of Lobaria pulmonaria (LP) and Parmelia caperata (PC), two lichen species, was examined in carrageenan-induced mouse paw edema test. Compared to the controls in carrageenan-induced inflammation (n = 5/group), our results showed that pretreatment by single oral doses with PC extract (50–500 mg/kg) gives better results than LP extract (50–500 mg/kg) in terms of anti-edematous activity, as after 4 h of carrageenan subplantar injection, paw edema formation was inhibited at 82–99% by PC while at 35–49% by LP. The higher anti-inflammatory effect of PC, at all doses, was also observed on the time-course of carrageenan-induced paw edema, displaying profile closely similar to that obtained with diclofenac (25 mg/kg), an anti-inflammatory drug reference (all p < 0.001). Both LP and PC, at all doses, significantly ameliorated liver catalase (CAT) activity (all p < 0.05). However, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity and glutathione (GSH) levels were found increased in liver of PC- compared to LP-carrageenan-injected mice. Our findings demonstrated on one hand higher preventive effects of PC compared to LP in a mouse carrageenan-induced inflammatory model and suggested, on the other hand, that anti-inflammatory effects elicited by the two lichens were closely associated with the amelioration in the endogenous antioxidant status of liver.

References

  • 1 Yousuf, S., Choudhary, M.I., Rahman, A.-U. (2014) Lichens: chemistry and biological activities. Stud Nat Prod Chem. 43, 223–257. First citation in articleCrossrefGoogle Scholar

  • 2 Nash, T.H. (2008) Lichen Biology, Cambridge University Press. 486 pp. First citation in articleCrossrefGoogle Scholar

  • 3 Tiévant, P. (2001) Guide des lichens: 350 espèces de lichens d’Europe, Delachaux et Niestlé Ed. 304 pp. First citation in articleGoogle Scholar

  • 4 Van Haluwyn, C., Lerond, M. (1993) Guide des lichens, 376 pp., Lechevalier Ed. First citation in articleGoogle Scholar

  • 5 Feige, G., Lumbsch, H.T., Huneck, S., Elix, J. (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. J Chromatogr. A. 646 (2): 417–427. First citation in articleCrossrefGoogle Scholar

  • 6 Fazio, A.T., Adler, M.T., Bertoni, M.D., Sepúlveda, C.S., Damonte, E.B. (2007) Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C. 62 (7–8): 543–549. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Elix, J.A., Stocker-Wörgötter, E. (2008) Biochemistry and secondary metabolites. In: Lichen biology (Nash, T.H., III, ed), pp. 104–133. Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • 8 Stocker-Wörgötter, E. (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep. 25, 188–200. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Bačkorová, M., Bačkor, M., Mikeš, J., Jendželovský, R., Fedoročko, P. (2011) Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol Vitr. 25, 37–44. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Huneck, S., Yoshimura, I. (1996) Identification of lichen substances. pp. 304–349., Springer, Berlin Heidelberg. First citation in articleCrossrefGoogle Scholar

  • 11 Shukla, V., Joshi, G.P., Rawat, M. (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev. 9 (2): 303–314. First citation in articleCrossrefGoogle Scholar

  • 12 Elix, J.A. (1996) Biochemistry and secondary metabolites. In: Lichen biology(Nash, T.H., ed), pp. 154–181. Cambridge University Press. First citation in articleGoogle Scholar

  • 13 Boustie, J., Galibert-Anne, M.-D., Lohezic-Le-Devehat, F., Chollet-Krugler, M., Tomasi, S. (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev. 10 (3): 287–307. First citation in articleCrossrefGoogle Scholar

  • 14 Shrestha, G., Clair, L. (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev. 12, 229–244. First citation in articleCrossrefGoogle Scholar

  • 15 Sweidan, A., Chollet-Krugler, M., Sauvager, A., van de Weghe, P., Chokr, A., Bonnaure-Mallet, M., et al. (2017) Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia. 121, 164–169. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Kumar, K.C., Muller, K. (1999) Lichen metabolites 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic and diffractaic acids on human keratinocyte growth. J Nat Prod. 62 (6): 821–823. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Suleyman, H., Odabasoglu, F., Aslan, A., Cakir, A., Karagoz, Y., Gocer, F., et al. (2003) Anti-inflammatory and antiulcerogenic effects of the aqueous extract of Lobaria pulmonaria (L.) Hoffm. Phytomedicine. 10, 552–557. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Bayir, Y., et al. (2005) Antioxidant activity, reducing power and total phenolic content of some lichen species. Fitoterapia. 76, 216–219. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Karakus, B., Odabasoglu, F., Cakir, A., Halici, Z., Bayir, Y., Halici, M., et al. (2009) The effects of methanol extract of Lobaria pulmonaria, a lichen species, on indometacin-induced gastric mucosal damage, oxidative stress and neutrophil infiltration. Phytother Res. 23 (5): 635–639. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Atalay, F., Halici, M.B., Mavi, A., Cakir, A., Odabasoglu, F., Kazaz, C., et al. (2011) Antioxidant phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. lichen species. Turk J Chem. 35, 647–661. First citation in articleGoogle Scholar

  • 21 Nayaka, S., Upreti, D.K., Khare, R. (2010) Medicinal lichens of India. In: Drugs from plants (Trivedi, P.C., ed), pp. 1–38., Avishkar Publishers, Distributors, Jaipur, India. First citation in articleGoogle Scholar

  • 22 Crawford, S.D. (2015) Lichens used in traditional medicine, p. 27–80. In: Lichen secondary metabolites: Bioactive properties and pharmaceutical potential. (Rankovic B., ed), (pp. 202). Springer (ISBN: 978-3-319-13373-7). First citation in articleGoogle Scholar

  • 23 Manojlovic, N., Vasiljevic, P., Maskovic, P., Juskovic, M., Dusanovic, G. (2012) Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evid Based Complement Alternat Med. 2012, 431452. doi: 10.1155/2012/452431. First citation in articleCrossrefGoogle Scholar

  • 24 Van Haluwyn, C., Asta, J., Gavériaux, J. (2013) Guide des lichens de France : Lichens des arbres, 239 pp. Belin. First citation in articleGoogle Scholar

  • 25 Salem, S. (2013) Contribution à l’étude de la biodiversité des lichens dans le Parc National de Taza, thèse de magister, 100 pp., Université Mohamed Seddiki Ben yahia, Jijel, Algérie. First citation in articleGoogle Scholar

  • 26 Winter, C.A., Ristey, E.A., Nuss, G.W. (1962) Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med. 111, 544–547. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Iqbal, M., Sharma, S.D., Okazaki, Y., Fujisawa, M., Okada, S. (2003) Dietary supplementation of curcumin enhanced antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol. 92, 33–38. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248–254. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Beauchamp, C., Fridovich, I. (1971) Assay of superoxide dismutase. Anal Biochem. 44, 276–87. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121–126. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Weckbecker, G., Cory, J.G. (1988) Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L 1210 cells in vitro. Cancer Lett. 40, 257–264. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Flohé, L., Günzler, W.A. (1984) Assays of glutathione peroxidase. Methods Enzymol. 105, 114–121. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Scott, A., Khan, K.M., Cook, J.L., Duronio, V. (2004) What is “inflammation”? Are we ready to move beyond Celsus? Br J Sports Med. 38, 248–249. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Scott, A., Khan, K.M., Roberts, C.R., Cook, J.L., Duronio, V. (2004) What do we mean by the term “inflammation”? A contemporary basic science update for sports medicine. Br J Sports Med. 38, 372–380. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Halici, Z., Dengiz, G.O., Odabasoglu, F., Suleyman, H., Cadirci, E., Halici, M. (2007) Amiadorane has anti-inflammatory and antioxidative properties: an experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol. 566, 215–221. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Wang, B., Huang, G., Lu, Y., Chang, L. (2013) Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem. 138, 751–756. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Salvemini, D., Wang, Z.Q., Wyatt, P., Bourdon, D.M., Marino, M.H., Manning, P.T., et al. (1996) Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol. 118, 829–838. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Posadas, I., Bucci, M., Roviezzo, F., Rossi, A., Parente, L., Sautebin, L., et al. (2004) Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol. 142, 331–338. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Dietert, R.R. (2015) Effects of endocrine disrupters on immune function and inflammation. In: Endocrine Disruption and Human Health (P.D. Darbre, ed), pp. 257–272. Elsevier. First citation in articleCrossrefGoogle Scholar

  • 40 Gualillo, O., Eiras, S., Lago, F., Dieguez, C., Casanueva, F.F. (2000) Evaluated serum leptin concentrations induced by experimental acute inflammation. Life Sci. 67 (20): 2433–2441. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Vinegar, R., Schreiber, W., Hugo, R.J. (1969) Biphasic development of carrageenan edema in rats. J. Pharmacol Exp Ther. 166, 96–103. First citation in articleMedlineGoogle Scholar

  • 42 Di Rosa, M., Giroud, J.P., Willoughby, D.A. (1971) Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol. 104, 15–29. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Boughton-Smith, N.K., Deakin, A.M., Follenfant, R.L., Whittle, B.J.R., Coarland, L.G. (1999) Role of oxygen radicals and arachidonic acid metabolites in the reverse passive arthus reaction and carrageenin paw edema in the rat. Br J Pharmacol. 110, 896–902. First citation in articleCrossrefGoogle Scholar

  • 44 Chen, G., Kamal, M., Hannon, R., Warner, T.D. (1998) Regulation of cyclooxygenase gene expression in rat smooth muscle cells by catalase. Biochem Pharmacol. 55, 1621–1631. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Govindarajan, R., Vijayakumar, M., Rao, Ch.V., Shirwaikar, A., Kumar, S., Rawat, A.K. (2007) Antiinflammatory and antioxidant activities of Desmodium gangeticum fractions in carrageenan-induced inflamed rats. Phytother Res. 21, 975–979. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Tanas, S., Odabasoglu, F., Halici, Z., Cakir, A., Aygun, H., Aslan, A., et al. (2010) Evaluation of anti-inflammatory and antioxidant activities of Peltigera rufescens lichen species in acute and chronic inflammation models. J Nat Med. 64, 42–49. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Boutennoun, H., Boussouf, L., Kebieche, M., Al-Qaoud, K., Madani, K. (2017) In vivo analgesic, anti-inflammatory and antioxidant potentials of Achillea odorata from north Algeria. S Afr J Bot. 112, 307–313. First citation in articleCrossrefGoogle Scholar

  • 48 Boussouf, L., Boutennoune, H., Kebieche, M., Adjeroud, N., Al-Qaoud, K., Madani, K. (2017) Anti-inflammatory, analgesic and antioxidant effects of phenolic compound from Algerian Mentha rotundifolia L. leaves on experimental animals. S Afr J Bot. 113, 77–83. First citation in articleCrossrefGoogle Scholar

  • 49 Luster, M.I., Simeonova, P., MGallucci, R., Matheson, J.M., Yucesoy, B. (2000) Immunotoxicology: role of inflammation in chemical-induced hepatotoxicity. Int J Immunopharmacol. 22 (12): 1143–1147. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Bouayed, J., Bohn, T. (2012) Dietary derived antioxidants: implications on health, pp. 1–22. Chapter invited for the book “Nutrition, Well-Being and Health”, pp. 224 (ISBN 978-953-51-0125-3), Bouayed J & Bohn T, Eds., Intech, Rijeka, Croatia. First citation in articleGoogle Scholar

  • 51 Atakisi, O., Erdogan, H.M., Atakisi, E., Citil, M., Kanici, A., Merhan, O., et al. (2010) Effects of reduced glutathione on nitric oxide level, total antioxidant and oxidant capacity and adenosine deaminase activity. Eur Rev Med Pharmacol Sci. 14, 19–23. First citation in articleMedlineGoogle Scholar

  • 52 Koga, M., Serritella, V., Messmera, M.M., Hayashi-Takagi, A., Hester, L.D., Snyder, S.H., et al. (2011) Glutathione is a Physiologic Reservoir of Neuronal Glutamate. Biochem Biophys Res Commun. 409 (4): 596–602. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Jain, A.P., Bhandarkar, S., Rai, G., Yadav, A.K., Lodhi, S. (2016) Evaluation of Parmotrema reticulatum taylor for antibacterial and antiinflammatory activities. Indian J Pharm Sci. 78 (1): 94–102. First citation in articleCrossref MedlineGoogle Scholar

  • 54 Petrosino, S., Campolo, M., Impellizzeri, D., Paterniti, I., Allara, M., Gugliandolo, E., et al. (2017) 2-Pentadecyl-2-oxazoline, the oxazoline of pea, modulates carrageenan-induced acute Inflammation. Front Pharmacol. 8, 308. doi: 10.3389/fphar.2017.00308. First citation in articleCrossref MedlineGoogle Scholar

  • 55 Studzińska-Sroka, E., Dubino, A. (2018) Lichens as a source of chemical compounds with anti-inflammatory activity. Herba Pol. 64 (1): 56–64. First citation in articleCrossrefGoogle Scholar

  • 56 Shrestha, G., St Clair, L.L., O’Neill, K.L. (2015) The immunostimulating role of lichen polysaccharides: a review. Phytother Res. 29 (3): 317–22. First citation in articleCrossref MedlineGoogle Scholar

  • 57 Omarsdottir, S., Freysdottir, J., Barsett, H., Paulsen, B.S., Olafsdottir, E.S. (2005) Effects of lichen heteroglycans on proliferation and IL-10 secretion by rat spleen cells and IL-10 and TNF-alpha secretion by rat peritoneal macrophages in vitro. Phytomedicine. 12 (6–7): 461–7. First citation in articleCrossref MedlineGoogle Scholar

  • 58 Ögmundsdottir, H.M., Zoëga, G.M., Gissurarson, S.R., Ingólfsdóttir, K. (1998) Antiproliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J Pharm Pharmacol. 50, 107–115. First citation in articleCrossref MedlineGoogle Scholar

  • 59 Sankawa, U., Shibuya, M., Ebizuka, Y., Noguchi, H., Kinoshita, T., Iitaka, Y., Endo, A., et al. (1982) Depside as potent inhibitor of prostaglandin biosynthesis: a new active site model for fatty acid cyclooxygenase. Prostaglandins. 24 (1): 21–34. First citation in articleCrossref MedlineGoogle Scholar

  • 60 Vijayakumar, C.S., Viswanathan, S., Reddy, M.K., Parvathavarthini, S., Kundu, A.B., Sukumar, E. (2000) Anti-inflammatory activity of (+)-usnic acid. Fitoterapia. 71 (5): 564–566. First citation in articleCrossref MedlineGoogle Scholar

  • 61 Manojlovic, N.T., Rankovic, B., Kosanic, M., Vasiljević, P., Stanojković, T. (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine. 19 (13): 1166–1172. First citation in articleCrossref MedlineGoogle Scholar