Skip to main content
Original Communication

Efficacy of phytosomal curcumin among patients with non-alcoholic fatty liver disease

Published Online:https://doi.org/10.1024/0300-9831/a000629

Abstract. Scientists proposed that curcumin could be used for treatment of non-alcoholic fatty liver disease (NAFLD). In this article, we aimed to identify the effect of curcumin on NAFLD improvement. Fifty patients with NAFLD, were divided into two groups in this randomized, double-blind, and controlled clinical trial. Patients in the curcumin group received 250 mg/day of phytosomal curcumin, while those in the control group received 250 mg/day of placebo for duration of eight weeks. Anthropometric measurements and fasting blood samples were taken once at the baseline and once at the end of the study. Analysis was performed on 45 patients (curcumin group n = 22, placebo group n = 22). According to between groups analysis, curcumin significantly reduced the carboxymethyl lisine (CML) (148 ± 108 ng/mL vs 197 ± 101 ng/mL, P = 0.04), 8-hydroxy-2’ -deoxyguanosine (8-OHdG) (46.9 ± 31.1 ng/mL vs 52.1 ± 43.1 ng/mL P = 0.03), liver enzymes (P < 0.001), weight (P < 0.001), waist circumference (P < 0.001), body fat percent (P < 0.01), and body mass index (BMI) (P < 0.01) in comparison with placebo. However, curcumin supplementation compared to placebo did not reduce soluble receptors for advanced glycation end products (sRAGE), hip circumference, waist/hip, and fat free mass by the end of the study. Our study indicated that phytosamal curcumin might be able to reduce the NAFLD progress by reducing the anthropometric measures, AGEs, and DNA damage. However, we need more studies with longer intervention duration, and larger sample size.

References

  • 1 Angulo, P. (2002) Nonalcoholic fatty liver disease. N Engl J Med. 346, 1221–31. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Adams, L.A., Sanderson, S., Lindor, K.D., & Angulo, P. (2005) The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol. 42, 132–8. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Ghaemi, A., Taleban, F.A., Hekmatdoost, A., Rafiei, A., Hosseini, V., & Amiri, Z., et al. (2013) How Much Weight Loss is Effective on Nonalcoholic Fatty Liver Disease? Hepat Mon. 13, e15227. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Elias, M.C., Parise, E.R., de Carvalho, L., Szejnfeld, D., & Netto, J.P. (2010) Effect of 6-month nutritional intervention on non-alcoholic fatty liver disease. Nutrition (Burbank, Los Angeles County, Calif). 26, 1094–9. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Jaeschke, H., & Ramachandran, A. (2011) Reactive oxygen species in the normal and acutely injured liver. Journal of Hepatology. 55, 227–8. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Kumar, A., Sharma, A., Duseja, A., Das, A., Dhiman, R.K., & Chawla, Y.K., et al. (2013) Patients with Nonalcoholic Fatty Liver Disease (NAFLD) have Higher Oxidative Stress in Comparison to Chronic Viral Hepatitis. J Clin Exp Hepatol. 3, 12–8. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Edeas, M., Attaf, D., Mailfert, A.S., Nasu, M., & Joubet, R. (2010) Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants. Pathol Biol. 58, 220–5. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature. 414, 813–20. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Thornalley, P.J., Battah, S., Ahmed, N., Karachalias, N., Agalou, S., Babaei-Jadidi, R., et al. (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 375, 581–92. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Patel, R., Baker, S.S., Liu, W., Desai, S., Alkhouri, R., & Kozielski, R., et al. (2012) Effect of dietary advanced glycation end products on mouse liver. PLoS One. 7, e35143. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Gupta, S.C., Patchva, S., & Aggarwal, B.B. (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal. 15, 195–218. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Mantzorou, M., Pavlidou, E., Vasios, G., Tsagalioti, E., & Giaginis, C. (2018) Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother Res: PTR. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Shapiro, H., & Bruck, R. (2005) Therapeutic potential of curcumin in non-alcoholic steatohepatitis. Nutr Res Rev. 18, 212–21. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Alizadeh, M., & Kheirouri, S. (2019) Curcumin against advanced glycation end products (AGEs) and AGEs-induced detrimental agents. Crit Rev Food Sci Nutr. 59, 1169–77. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Sun, Y.P., Gu, J.F., Tan, X.B., Wang, C.F., Jia, X.B., & Feng, L., et al. (2016) Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal. Mol Med Rep. 13, 1475–86. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Yamagishi, S.I., Matsui, T., Ishibashi, Y., Isami, F., Abe, Y., & Sakaguchi, T., et al. (2017) Phytochemicals Against Advanced Glycation End Products (AGEs) and the Receptor System. Curr Pharm Des. 23, 1135–41. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Alhusaini, A., Fadda, L., Hassan, I., Ali, H.M., Alsaadan, N., & Aldowsari, N., et al. (2018) Liposomal Curcumin Attenuates the Incidence of Oxidative Stress, Inflammation, and DNA Damage Induced by Copper Sulfate in Rat Liver. Dose-response. 16, 1559325818790869. First citation in articleCrossrefGoogle Scholar

  • 18 Cal, T., & Bucurgat, U.U. (2019) In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. Daru. 27, 203–18. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Marczylo, T.H., Verschoyle, R.D., Cooke, D.N., Morazzoni, P., Steward, W.P., & Gescher, A.J. (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 60, 171–7. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Cuomo, J., Appendino, G., Dern, A.S., Schneider, E., McKinnon, T.P., & Brown, M.J., et al. (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod. 74, 664–9. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Hariri, M., Salehi, R., Feizi, A., Mirlohi, M., Ghiasvand, R., & Habibi, N. (2015) A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: effects on epigenetics and oxidative stress in patients with type II diabetes. Genes Nutr. 10, 52. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Craig, C.L., Marshall, A.L., Sjostrom, M., Bauman, A.E., Booth, M.L., & Ainsworth, B.E., et al. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 35, 1381–95. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C.J., & Foresti, R., et al. (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J. 371, 887–95. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Olszanecki, R., Gebska, A., & Korbut, R. (2007) The role of haem oxygenase-1 in the decrease of endothelial intercellular adhesion molecule-1 expression by curcumin. Basic Clin Pharmacol Toxicol. 101, 411–5. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Daverey, A., Agrawal, S.K. (2018) Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res. 1692, 45–55. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Ciftci, O., Turkmen, N.B., & Taslidere, A. (2018) Curcumin protects heart tissue against irinotecan-induced damage in terms of cytokine level alterations, oxidative stress, and histological damage in rats. Naunyn Schmiedebergs Arch Pharmacol. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Alizadeh, F., Javadi, M., Karami, A.A., Gholaminejad, F., Kavianpour, M., & Haghighian, H.K. (2018) Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phytother Res. 32, 514–21. First citation in articleCrossref MedlineGoogle Scholar

  • 28 DiSilvestro, R.A., Joseph, E., Zhao, S., & Bomser, J. (2012) Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 11, 79. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Cox, K.H., Pipingas, A., & Scholey, A.B. (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol. 29, 642–51. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Mirhafez, S.R., Farimani, A.R., Dehhabe, M., Bidkhori, M., Hariri, M., & Ghouchani, B.F., et al. (2019) Effect of Phytosomal Curcumin on Circulating Levels of Adiponectin and Leptin in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Gastrointestin Liver Dis: JGLD. 28, 183–9. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Valavanidis, A., Vlachogianni, T., & Fiotakis, C. (2009) 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C. 27, 120–39. First citation in articleCrossrefGoogle Scholar

  • 32 Chilelli, N.C., Ragazzi, E., Valentini, R., Cosma, C., Ferraresso, S., & Lapolla, A., et al. (2016) Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients. 8 First citation in articleCrossref MedlineGoogle Scholar

  • 33 Hu, T.Y., Liu, C.L., Chyau, C.C., & Hu, M.L. (2012) Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells. J Agric Food Chem. 60, 8190–6. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Desai, K.M., & Wu, L. (2008) Free radical generation by methylglyoxal in tissues. Drug Metabol Drug Interact. 23, 151–73. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Huang, S.M., Hsu, C.L., Chuang, H.C., Shih, P.H., Wu, C.H., & Yen, G.C. (2008) Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells. Neurotoxicology. 29, 1016–22. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Alizadeh, M., & Kheirouri, S. (2017) Curcumin against advanced glycation end products (AGEs) and AGEs-induced detrimental agents. Crit Rev Food Sci Nutr. 1–9. First citation in articleGoogle Scholar

  • 37 Santos, J.C., Valentim, I.B., de Araujo, O.R., Ataide Tda, R., Goulart, M.O. (2013) Development of nonalcoholic hepatopathy: contributions of oxidative stress and advanced glycation end products. Int J Mol Sci. 14, 19846–66. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Yilmaz, Y., Ulukaya, E., Gul, O.O., Arabul, M., Gul, C.B., & Atug, O., et al. (2009) Decreased plasma levels of soluble receptor for advanced glycation endproducts (sRAGE) in patients with nonalcoholic fatty liver disease. Clin Biochem. 42, 802–7. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Di Pierro, F., Bressan, A., Ranaldi, D., Rapacioli, G., Giacomelli, L., & Bertuccioli, A. (2015) Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur Rev Med Pharmacol Sci. 19, 4195–202. First citation in articleMedlineGoogle Scholar

  • 40 Sarker, M.R., Franks, S., Sumien, N., Thangthaeng, N., Filipetto, F., & Forster, M. (2015) Curcumin Mimics the Neurocognitive and Anti-Inflammatory Effects of Caloric Restriction in a Mouse Model of Midlife Obesity. PloS one. 10, e0140431. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Bradford, P.G. (2013) Curcumin and obesity. BioFactors (Oxford, England). 39, 78–87. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009) Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr. 139, 919–25. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Lee, Y.K., Lee, W.S., Hwang, J.T., Kwon, D.Y., Surh, Y.J., & Park, O.J. (2009) Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem. 57, 305–10. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Hariri, M., & Haghighatdoost, F. (2018) Effect of Curcumin on Anthropometric Measures: A Systematic Review on Randomized Clinical Trials. J Am Coll Nutr. 37, 215–22. First citation in articleCrossref MedlineGoogle Scholar

  • 45 White, C.M., & Lee, J.Y. (2019) The impact of turmeric or its curcumin extract on nonalcoholic fatty liver disease: a systematic review of clinical trials. Pharm Pract. 17, 1350. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Cicero, A.F.G., Sahebkar, A., Fogacci, F., Bove, M., Giovannini, M., & Borghi, C. (2019) Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur J Nutr. First citation in articleCrossref MedlineGoogle Scholar