Skip to main content
Original Communication

Grape seed extract supplementation in non-alcoholic fatty liver disease

A randomized controlled trial

Published Online:https://doi.org/10.1024/0300-9831/a000805

Abstract:Background: Despite rising non-alcoholic fatty liver disease (NAFLD) prevalence and its impact on liver health, there’s a lack of studies on grape seed extract’s (GSE) effect on oxidative stress and quality of life (QoL) in NAFLD patients. This study aims to fill this gap by the potential benefits of GSE in reducing oxidative stress and improving QoL. Methods: In this randomized clinical trial study, fifty patients with NAFLD were randomly assigned to receive either 2 tablets of GSE containing 250 mg of proanthocyanidins or placebo (25 participants in each group) for two months. QoL was evaluated using the SF-36 questionnaire, and oxidative stress variables (TAC, MDA, SOD, GPx, CAT, and IL-6) were measured at the beginning and end of the study. Results: Compared with the control group, the group supplemented with GSE experienced greater reductions in IL-6 and MDA (3.14±1.43 pg/ml vs. 2.80±0.31 pg/ml; 4.16±2.09 μM vs. 4.59±1.19 μM, p for all <0.05), as well as greater increases in TAC, SOD, and GPx levels (0.18±0.08 mM vs. –0.03±0.09 mM; 10.5±6.69 U/ml vs. 8.93±1.63 U/ml; 14.7±13.4 U/ml vs. 8.24±3.03 U/ml, p for all <0.05). Furthermore, the QoL questionnaire showed that physical limitations, general health, and total physical health were significantly improved in the GSE group compared with the placebo (17.0±42.0 vs. –12.0±37.5; 3.80±14.8 vs. –3.92±9.55; 5.08 5.26 vs. –7.01±13.7, p for all <0.05). Conclusions: GSE can be effective in improving oxidative stress and QoL in patients with NAFLD. More studies are needed to confirm the results of this study.

References

  • 1 Milić S, Stimac D. Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Digestive diseases (Basel, Switzerland). 2012;30(2):158–62. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851–61. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Han MAT, Yu Q, Tafesh Z, Pyrsopoulos N. Diversity in NAFLD: a review of manifestations of nonalcoholic fatty liver disease in different ethnicities globally. J Clin Transl Hepatol. 2021;9(1):71–80. First citation in articleMedlineGoogle Scholar

  • 4 Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082–91. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Sayiner M, Stepanova M, Pham H, Noor B, Walters M, Younossi ZM. Assessment of health utilities and quality of life in patients with non-alcoholic fatty liver disease. BMJ Open Gastroenterology. 2016;3(1):e000106. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Huber Y, Boyle M, Hallsworth K, Tiniakos D, Straub B, Labenz C, et al. Health-related quality of life in non-alcoholic fatty liver disease associates with hepatic inflammation. Clin Gastroenterol Hepatol. 2019;17(10):2085–92. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Golubeva JA, Sheptulina AF, Yafarova AA, Mamutova EM, Kiselev AR, Drapkina OM. Reduced quality of life in patients with non-alcoholic fatty liver disease may be associated with depression and fatigue. Healthcare (Basel). 2022;10(9):1699. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Guisantes-Batan E, Mazuecos L, Rubio B, Pereira-Caro G, Moreno-Rojas JM, Andrés A, et al. Grape seed extract supplementation modulates hepatic lipid metabolism in rats. Implication of PPARβ/δ. Food & Function. 2022;13(21):11353–68. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Sarkhosh-Khorasani S, Sangsefidi ZS, Hosseinzadeh M. The effect of grape products containing polyphenols on oxidative stress: a systematic review and meta-analysis of randomized clinical trials. Nutr J. 2021;20(1):25. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Toaldo IM, Cruz FA, da Silva EL, Bordignon-Luiz MT. Acute consumption of organic and conventional tropical grape juices (Vitis labrusca L.) increases antioxidants in plasma and erythrocytes, but not glucose and uric acid levels, in healthy individuals. Nutr Res. 2016;36(8):808–17. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int J Mol Sci. 2010;11(2):622–46. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Mabrouk M, El Ayed M, Démosthènes A, Aissouni Y, Aouani E, Daulhac-Terrail L, et al.. Antioxidant effect of grape seed extract corrects experimental autoimmune encephalomyelitis behavioral dysfunctions, demyelination, and glial activation. Front Immunol. 2022;13:960355. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Ferraioli G, Soares Monteiro LB. Ultrasound-based techniques for the diagnosis of liver steatosis. World J Gastroenterol. 2019;25(40):6053–62. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Doig GS, Simpson F. Randomization and allocation concealment: a practical guide for researchers. J. Critical Care. 2005;20(2):187–91. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Odai T, Terauchi M, Kato K, Hirose A, Miyasaka N. Effects of grape seed proanthocyanidin extract on vascular endothelial function in participants with prehypertension: a randomized, double-blind, placebo-controlled study. Nutrients. 2019;11(12):2844. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Mojiri-Forushani H, Hemmati A, Khanzadeh A, Zahedi A. Effectiveness of grape seed extract in patients with nonalcoholic fatty liver: a randomized double-blind clinical study. Hepat Mon. 2022;22(1):e132309. First citation in articleCrossrefGoogle Scholar

  • 17 Ghaffarpour M, Houshiar-Rad A, Kianfar H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran: Nashre Olume Keshavarzy. 1999;7(213):42–58. First citation in articleGoogle Scholar

  • 18 Lesani A, Djafarian K, Akbarzade Z, Janbozorgi N, Shab-Bidar S. Meal-specific dietary patterns and their contribution to habitual dietary patterns in the Iranian population. Br J Nutr. 2022:1–10. https://doi.org/10.1017/S0007114521005067. First citation in articleCrossrefGoogle Scholar

  • 19 Mohammadifard N, Sajjadi F, Maghroun M, Alikhasi H, Nilforoushzadeh F, Sarrafzadegan N. Validation of a simplified food frequency questionnaire for the assessment of dietary habits in Iranian adults: Isfahan Healthy Heart Program, Iran. ARYA Atheroscler. 2015;11(2):139–46. First citation in articleMedlineGoogle Scholar

  • 20 Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Montazeri A, Goshtasebi A, Vahdaninia M, Gandek B. The Short Form Health Survey (SF-36): translation and validation study of the Iranian version. Qual Life Res. 2005;14(3):875–82. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Montazeri A, Goshtasebi A, Vahdaninia MS. The Short Form Health Survey (SF-36): Translation and validation study of the Iranian version. Payesh (Health Monitor) Journal. 2006;5(1):875–82. First citation in articleGoogle Scholar

  • 23 Evans M, Wilson D, Guthrie N. A randomized, double-blind, placebo-controlled, pilot study to evaluate the effect of whole grape extract on antioxidant status and lipid profile. J Funct Foods. 2014;7:680–91. First citation in articleCrossrefGoogle Scholar

  • 24 Use CfMPfH. Guideline on adjustment for baseline covariates in clinical trials. London: European Medicines Agency; 2015. First citation in articleGoogle Scholar

  • 25 Ray S, Bagchi D, Lim PM, Bagchi M, Gross SM, Kothari SC, et al. Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol. 2001;109(3–4):165–97. First citation in articleMedlineGoogle Scholar

  • 26 Vachliotis I, Goulas A, Papaioannidou P, Polyzos SA. Nonalcoholic fatty liver disease: lifestyle and quality of life. Hormones (Athens). 2022;21(1):41–9. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Siahpoosh A, Majdinasab N, Derakhshannezhad N, Khalili HR, Malayeri A. Effect of grape seed on quality of life in multiple sclerosis patients. J Contemp Med Sci. 2018;4(3):148–152. First citation in articleGoogle Scholar

  • 28 Jiang C, Sakakibara E, Lin WJ, Wang J, Pasinetti GM, Salton SR. Grape-derived polyphenols produce antidepressant effects via VGF- and BDNF-dependent mechanisms. Ann N Y Acad Sci. 2019;1455(1):196–205. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Ashoori M, Soltani S, Kolahdouz-Mohammadi R, Moghtaderi F, Clayton Z, Abdollahi S. The effect of whole grape products on blood pressure and vascular function: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2023;33(10):1836–48. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Xianchu L, Ming L, Xiangbin L, Lan Z. Grape seed proanthocyanidin extract supplementation affects exhaustive exercise-induced fatigue in mice. Food. Nutr Res. 2018;62. https://doi.org/10.29219/fnr.v62.1421. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Nho H, Kim K-A. Effects of grape seed extract supplementation on endothelial function and endurance performance in basketball players. Int J Environ Res Public Health. 2022;19(21):14223. First citation in articleCrossref MedlineGoogle Scholar

  • 32 O’Connor PJ, Caravalho AL, Freese EC, Cureton KJ. Grape consumption’s effects on fitness, muscle injury, mood, and perceived health. Int J Sport Nutr Exerc Metab. 2013;23(1):57–64. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Richards JC, Lonac MC, Johnson TK, Schweder MM, Bell C. Epigallocatechin-3-gallate increases maximal oxygen uptake in adult humans. Med Sci Sports Exerc. 2010;42(4):739–44. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Dani C, Andreazza AC, Gonçalves CA, Kapizinski F, Henriques JAP, Salvador M. Grape juice increases the BDNF levels but not alter the S100B levels in hippocampus and frontal cortex from male Wistar Rats. An Acad Bras Cienc. 2017;89(1):155–61. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Bell L, Whyte AR, Lamport DJ, Spencer JP, Butler LT, Williams CM. Grape seed polyphenol extract and cognitive function in healthy young adults: a randomised, placebo-controlled, parallel-groups acute-on-chronic trial. Nutr Neurosci. 2022;25(1):54–63. First citation in articleCrossref MedlineGoogle Scholar

  • 36 de Araújo Rodrigues P, de Morais SM, Pereira JF, de Assis ALC, Alves AA, Benjamin SR, et al. Neuroprotective effects of proanthocyanidins of grape seed extracts against oxidative stress and apoptosis induced by 6-hydroxydopamine in PC12 cells. Conjecturas. 2021;21(2):68–86. First citation in articleCrossrefGoogle Scholar

  • 37 Cires MJ, Wong X, Carrasco-Pozo C, Gotteland M. The Gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Front Nutr. 2016;3:57. First citation in articleMedlineGoogle Scholar

  • 38 Fossati A. Towards an approach to mental disorders based on individual differences. World Psychiatry. 2011;10(2):115–6. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Otten D, Tibubos AN, Schomerus G, Brähler E, Binder H, Kruse J, et al. Similarities and differences of mental health in women and men: a systematic review of findings in three large German cohorts. Front Public Health. 2021;9:553071. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Asghari S, Hamedi-Shahraki S, Amirkhizi F. Systemic redox imbalance in patients with nonalcoholic fatty liver disease. Eur J Clin Invest. 2020;50(4):e13211. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Hong T, Chen Y, Li X, Lu Y. The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxid Med Cell Longev. 2021;2021:6889533. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Sano A, Uchida R, Saito M, Shioya N, Komori Y, Tho Y, et al. Beneficial effects of grape seed extract on malondialdehyde-modified LDL. J Nutr Sci Vitaminol (Tokyo). 2007;53(2):174–82. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Farahat MH, Abdallah FM, Ali HA, Hernandez-Santana A. Effect of dietary supplementation of grape seed extract on the growth performance, lipid profile, antioxidant status and immune response of broiler chickens. Animal. 2017;11(5):771–7. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Hasona N, Morsi A. Grape seed extract alleviates dexamethasone-induced hyperlipidemia, lipid peroxidation, and hematological alteration in rats. Indian J Clin Biochem. 2019;34(2):213–8. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Taghizadeh M, Malekian E, Memarzadeh MR, Mohammadi AA, Asemi Z. Grape seed extract supplementation and the effects on the biomarkers of oxidative stress and metabolic profiles in female volleyball players: a randomized, double-blind, placebo-controlled clinical trial. Iran Red Crescent Med J. 2016;18(9):e31314. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Rodríguez-Carrizalez AD, Castellanos-González JA, Martínez-Romero EC, Miller-Arrevillaga G, Pacheco-Moisés FP, Román-Pintos LM, et al. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: A phase IIa, randomized, double-blind, and placebo-controlled study. Redox Rep. 2016;21(4):155–63. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Pourghassem-Gargari B, Abedini S, Babaei H, Aliasgarzadeh A, Pourabdollahi P. Effect of supplementation with grape seed (Vitis vinifera) extract on antioxidant status and lipid peroxidation in patient with type II diabetes. J Med Plant Res. 2011;5(10):2029–34. First citation in articleGoogle Scholar

  • 48 Yang L, Xian D, Xiong X, Lai R, Song J, Zhong J. Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications. Biomed Res Int. 2018;2018:8584136. First citation in articleMedlineGoogle Scholar

  • 49 van Lith R, Ameer GA. Chapter Ten – Antioxidant Polymers as Biomaterial. In: Dziubla TButterfield DA, editors. Oxidative Stress and Biomaterials (pp. 251–296). Academic Press; 2016. First citation in articleCrossrefGoogle Scholar

  • 50 Hokayem M, Blond E, Vidal H, Lambert K, Meugnier E, Feillet-Coudray C, et al. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. 2013;36(6):1454–61. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Busserolles J, Gueux E, Balasinska B, Piriou Y, Rock E, Rayssiguier Y, et al. In vivo antioxidant activity of procyanidin-rich extracts from grape seed and pine (Pinus maritima) bark in rats. Int J Vitam Nutr Res. 2006;76(1):22–7. First citation in articleLinkGoogle Scholar

  • 52 Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(Suppl 2):S3. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Wang Q, Chen Y-y, Yang Z-c, Yuan H-j, Dong Y-w, Miao Q, et al. Grape seed extract attenuates demyelination in experimental autoimmune encephalomyelitis mice by inhibiting inflammatory response of immune cells. Chin J Integr Med. 2023;29(5):394–404. First citation in articleCrossref MedlineGoogle Scholar

  • 54 Giribabu N, Karim K, Kilari EK, Kassim NM, Salleh N. Anti-inflammatory, antiapoptotic and proproliferative effects of vitis vinifera seed ethanolic extract in the liver of streptozotocin-nicotinamide-induced type 2 diabetes in male rats. Can J Diabetes. 2018;42(2):138–49. First citation in articleCrossref MedlineGoogle Scholar