Skip to main content
Übersichtsarbeit

Der Zusammenhang zwischen Sucht und Schlaf: Grundlagen der Schlafregulation

Published Online:https://doi.org/10.1024/0939-5911.a000226

Fragestellung: Drogen greifen als psychotrope Substanzen in aktivierende oder hemmende Systeme des zentralen Nervensystems ein und können somit Einfluss auf die Schlafregulation nehmen. Gegenstand dieser Arbeit ist die Darstellung des Einflusses verschiedener Substanzen auf den Schlaf. Einleitend soll ein Überblick über wichtige Schlafcharakteristika und Schlafregulationsmechanismen gegeben werden. Ergebnisse: Schlaf wird anhand charakteristischer elektroenzephalographischer Merkmale in einzelne Stadien eingeteilt, die in bestimmter Weise während der Nacht durchlaufen werden. Bei der Schlafregulation werden Mechanismen der Wachheit, der Schlafinduktion und des Wechsels zwischen REM- und non-REM-Schlaf unterschieden. Für die Regulation ist ein Netzwerk spezialisierter Kerngebiete des Gehirns verantwortlich, in dem das Aufsteigende retikuläre aktivierende System, Raphe-Kerne, Locus coeruleus, ventrolaterale präoptische Nucleus, der tuberomammilläre Nucleus und die laterodorsalen und pedunculopontinen tegmentalen Nuclei beteiligt sind. Die Interaktion dieser Kerngebiete wird durch Neurotransmitter wie Acetylcholin, Noradrenalin, Serotonin, Dopamin, GABA, Histamin, Orexin und Adenosin vermittelt. Die Regulation unterliegt einerseits der wechselseitigen Inhibition der Zentren wie auch circadianen Taktgebern. Schlussfolgerung: Externe Einflussnahme auf die Interaktion dieser Neurotransmitter führt zu Veränderungen der Schlafarchitektur und könnte den Ansatzpunkt verschiedener schlafstörender oder -fördernder Substanzen darstellen.


The Relationship Between Addiction and Sleep: Basic Information on Sleep Regulation

Aim: Drugs as psychotropic substances may induce either activating or tranquilizing effects on the brain and therefore affect sleep regulating systems. In this work we will focus on the influence of several drugs on sleep changes. First we will give an overview about sleep characteristics and sleep regulating mechanisms. Results: In the electroencephalogram specific sleep stages are defined which occur in a distinctive order during the night. Sleep regulation means mechanisms to induce wakefulness and sleep as well as the alternative occurrence of REM and nonREM sleep. In this regulation a specialized neuronal brain network is involved, including the ascending reticular activating system (ARAS), the Raphe nuclei, Locus coeruleus, ventrolateral praeoptic nucleus, tuberomammilare nucleus, the laterodorsal and pedunculopontine tegmental nuclei. Several neurotransmitters like acetylcholine, norepinephrine, serotonine, dopamine, GABA, histamine, orexine and adenosine are mediating the interaction between these brain centers. Reciprocal inhibition and circadian rhythms are two regulating principles within this network. Conclusion: Any external influence upon this interaction of neurotransmitters could induce sleep changes and may be the mechanism by which several substances induce or disturb sleep.

Literatur

  • Baglioni, C. , Battagliese, G. , Feige, B. , Spiegelhalder, K. , Nissen, C. , Voderholzer, U. et al. (2011). Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. Journal of Affective Disorders, 135(1 – 3), 10 – 9. First citation in articleCrossrefGoogle Scholar

  • Basheer, R. , Strecker, R. E. , Thakkar, M. H. , McCarley, R. W. (2004). Adenosin and sleep-wake regulation. Progress in Neurobiology, 73, 379 – 396. First citation in articleCrossrefGoogle Scholar

  • Borbély, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1, 195 – 204. First citation in articleGoogle Scholar

  • Born, J. , Rasch, B. , Gais, S. (2006). Sleep to remember. Neuroscientist, 12, 410 – 424. First citation in articleCrossrefGoogle Scholar

  • Bradley, T. D. , Floras, J. S. (2009). Obstructive sleep apnoea and its cardiovascular consequences. Lancet, 373(9657), 82 – 93. First citation in articleCrossrefGoogle Scholar

  • Colrain, I. M. , Trinder, J. , Swan, G. E. (2004). The impact of smoking cessation on objective and subjective markers of sleep: Review, synthesis and recommendations. Nicotine & Tobacco Research, 6, 913 – 925. First citation in articleCrossrefGoogle Scholar

  • Espana, R. A. , Scammell, T. E. (2011). Sleep neurobiology from a clinical perspective. Sleep, 34, 845 – 858. First citation in articleGoogle Scholar

  • Gallopin, T. , Luppi, P. H. , Cauli, B. , Urade, Y. , Rossier, J. , Hayaishi, O. et al. (2005). The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2 A receptors in the ventrolateral preoptic nucleus. Neuroscience, 134, 1377 – 1390. First citation in articleCrossrefGoogle Scholar

  • Gillin, J. C. (1998). Are sleep disturbances risk factors for anxiety, depressive and addictive disorders? Acta Psychiatrica Scandinavica, 98(Suppl. 393), 39 – 43. First citation in articleCrossrefGoogle Scholar

  • Hornyak, M. , Feige B., Riemann , D. & Voderholzer, U. (2006). Periodic leg movements in sleep and periodic limb movement disorder: Prevalence, clinical significance and treatment. Sleep Medicine Reviews, 10, 169 – 177. First citation in articleCrossrefGoogle Scholar

  • Iber, C. , Ancoli-Israel, S. , Chesson, A. , Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications. (1st ed.). Westchester, IL: American Academy of Sleep Medicine. First citation in articleGoogle Scholar

  • Léna, I. , Parrot, S. , Deschaux, O. , Muffat-Joly, S. , Sauvinet, V. , Renaud, B. et al. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81, 891 – 899. First citation in articleCrossrefGoogle Scholar

  • Lu, J. , Sherman, D. , Devor, M. , Saper, C. B. (2006). A putative flip-flop switch for control of REM sleep. Nature, 441, 589 – 594. First citation in articleCrossrefGoogle Scholar

  • Maquet, P. (2010). Understanding non rapid eye movement sleep through neuroimaging. The World Journal of Biological Psychiatry 11(Suppl. 1), 9 – 15. First citation in articleCrossrefGoogle Scholar

  • McCarley, R. W. , Hobson, J. A. (1975). Neuronal excitability modulation over the sleep cycle: A structural and mathematical model. Science, 189(4196), 58 – 60. First citation in articleCrossrefGoogle Scholar

  • Nissen, C. , Kloepfer, C. , Nofzinger, E. A. , Feige, B. , Voderholzer, U. , Riemann, D. (2006). Impaired sleep-related memory consolidation in primary insomnia – a pilot study. Sleep, 29, 1068 – 1073. First citation in articleCrossrefGoogle Scholar

  • Ohayon, M. M. (2002). Epidemiology of insomnia: What we know and what we still need to learn. Sleep Medicine Reviews, 6, 97 – 111. First citation in articleCrossrefGoogle Scholar

  • Ohayon, M. M. , Carskadon, M. A. , Guilleminault, C. , Vitiello, M. V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep, 27, 1255 – 1273. First citation in articleCrossrefGoogle Scholar

  • Porkka-Heiskanen, T. , Alanko, L. , Kalinchuk, A. , Stenberg, D. (2002). Adenosine and sleep. Sleep Medicine Reviews, 6, 321 – 332. First citation in articleCrossrefGoogle Scholar

  • Rechtschaffen, A. , Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles: Brain Information Service, Brain Research Institute, UCLA. First citation in articleGoogle Scholar

  • Riemann, D. , Voderholzer, U. (2003). Primary insomnia: A risk factor to develop depression? Journal of Affective Disorders, 76, 255 – 259. First citation in articleCrossrefGoogle Scholar

  • Riemann, D. , Spiegelhalder, K. , Feige, B. , Voderholzer, U. , Berger, M. , Perlis, M. et al. (2010) The hyperarousal model of insomnia: A review of the concept and its evidence. Sleep Medicine Reviews, 14, 19 – 31. First citation in articleCrossrefGoogle Scholar

  • Rodenbeck, A. , Huether, G. , Rüther, E. , Hajak, G. (2002). Interactions between evening and nocturnal cortisol secretion and sleep parameters in patients with severe chronic primary insomnia. Neuroscience Letters, 324, 159 – 163. First citation in articleCrossrefGoogle Scholar

  • Saint-Mleux, B. , Eggermann, E. , Bisetti, A. , Bayer, L. , Machard, D. , Jones, et al. (2004). Nicotinic enhancement of the noradrenergic inhibition of sleep-promoting neurons in the ventrolateral preoptic area. Journal of Neuroscience, 24, 63 – 67. First citation in articleCrossrefGoogle Scholar

  • Saper, C. B. , Scammell, T. E. , Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257 – 1263. First citation in articleCrossrefGoogle Scholar

  • Sengupta, P. , Roy, S. , Krueger, J. M. (2011). The ATP-cytokine-adenosine hypothesis: How the brain translates past activity into sleep. Sleep and Biological Rhythms, 9(Suppl. 1), 29 – 33. First citation in articleCrossrefGoogle Scholar