Skip to main content
Originalartikel

Object Alternation in Alcohol Dependent Patients without Amnesic Syndrome

Published Online:https://doi.org/10.1024/1016-264X.19.1.33

Several studies indicate that the frontal cortex is sensitive to the toxic effects of alcohol. Recent studies of our group revealed an impairment of alcohol dependent subjects in object alternation. One major problem of these studies is that they all used object alternation embedded in a spatial presentation and with two spatially arranged response buttons: a left and a right hand response key. The deficit in alternation tasks may be due to problems in processing these spatial features.

We investigated 24 detoxified alcohol dependent patients, who were in a long term treatment program, and 28 control subjects matched for intelligence and age, using a new object alternation paradigm avoiding confounding of spatial effects.

The results indicate that object alternation is impaired in long term alcohol dependent patients without amnesic syndrome, even when no differential spatial response is afforded. We suggest that internal control on a cognitive level, as well as on a behavioral level, may be a fundamental problem in addiction and might be related to ventromedial and orbitofrontal dysfunction.


Objct Alternation bei Alkoholabhängigen ohne amnestisches Syndrom

Viele Studien zur Alkoholabhängigkeit und Kognition haben ergeben, dass der frontale Kortex sensitiv für alkoholtoxische Effekte ist. Einige Arbeiten unserer Arbeitsgruppe zeigten bei Alkoholabhängigen ein Defizit in Object Alternation, das jedoch mit visuell räumlichen Effekten konfundiert war. Wir verglichen jetzt 24 alkoholabhängige Patienten, die entgiftet waren und sich in langzeittherapeutischer Behandlung einer Klinik befanden, mit 28 alters- und bildungsgleichen gesunden Kontrollpersonen anhand eines Object Alternation Paradigmas, das räumliche Positionseffekte und Handlungswechsel vermied.

Im Ergebnis zeigte sich, dass Alkoholabhängige Patienten ohne amnestisches Syndrom in Object Alternation beeinträchtigt sind, auch wenn konfundierende Variablen kontrolliert werden. Somit handelt es sich um ein fundamentales exekutives Defizit der internalen Kontrolle von Verhalten bei Abhängigkeitserkrankten, das möglicherweise in Beziehung zu ventromedialen und orbitofrontalen Funktionsstörungen gesehen werden kann.

References

  • Adams, K. M. , Gilman, S. , Johnson-Greene, D. , Koeppe, R. A. , Junck, L. , Kluin, K. J. , Martorello, S. , Johnson, M. J. , Heumann, M. , Hill, E. (1998). The Significance of Family History Status in Relation to Neuropsychological Test Performance and Cerebral Glucose Metabolism Studied with Positron Emission Tomography in Older Alcoholic Patients. Alcoholism: Clinical and Experimental Research, 22, 105–110. First citation in articleCrossrefGoogle Scholar

  • Ambrose, M. L. , Bowden, S. C. , Whelan, G. (2001). Working Memory Impairments in Alcohol-Dependent Participants without Clinical Amnesia. Alcoholism: Clinical and Experimental Research, 25, 185 – 191. First citation in articleCrossrefGoogle Scholar

  • Ardila, A. (1999). A Neuropsychological Approach to Intelligence. Neuropsychological Review, 9, 117 – 136. First citation in articleCrossrefGoogle Scholar

  • Bardenhagen, F. J. , Bowden, S. C. (1998). Cognitive Components in Perseverative and Nonperseverative Errors on the Object Alternation Task. Brain and Cognition, 37, 224 – 236. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. , Dolan, S. , Denburg, N. , Hindes. A., Anderson , S. W., Nathan , P. E. (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. (2003). Risky-Business: Emotion, Decision-Making, and Addiction. Journal of Gambling Studies, 19, 23 – 51. First citation in articleCrossrefGoogle Scholar

  • Bertera, J. H. & Parsons, O. A. (1978). Impaired visual search in alcoholics. Alcoholism: Clinical and Experimental Research, 2, 9–14. First citation in articleCrossrefGoogle Scholar

  • Brand, M. & Markowitsch, H.– J. (2006). Memory processes and the orbitofrontal cortex. In: D. Zald & S. Rauch (Eds.), The orbitofrontal cortex (pp. 285 – 306). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Brand, M. , Recknor, E. , Grabenhorst, F. , Bechara, A. (2007). Decisions under ambiguity and decisions under risk: Correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. Journal of Clinical and Experimental Neuropsychology, 29, 86 – 99. First citation in articleCrossrefGoogle Scholar

  • Brokate, B. , Hildebrandt, H. , Eling, P. , Fichtner, H. , Runge, K. , Timm, C. (2003). Frontal lobe dysfunctions in Korsakoff’s syndrome and chronic alcoholism: Continuity or discontinuity? Neuropsychology, 17, 420 – 428. First citation in articleCrossrefGoogle Scholar

  • Dao-Castellana, M. H. , Samson, Y. , Legault, F. , Martinot, J. L. , Aubin, H. J. , Crouzel, C. , Feldman, L. , Barrucand, D. , Rancurel, G. , Feline, A. , Syrota, A. (1998). Frontal dysfunction in neurologically normal chronic alcoholic subjects: metabolic and neuropsychological findings. Psychological Medicine, 28, 1039–1048. First citation in articleCrossrefGoogle Scholar

  • Evert, D. L , Oscar-Berman, M. (2001). Selective attentional processing and the right hemisphere: effects of aging and alcoholism. Neuropsychology, 15, 452 – 461. First citation in articleCrossrefGoogle Scholar

  • Freedman, M. , Black, S. , Ebert, P. , Binns, M. (1998). Orbitofrontal function, object alternation and perseveration. Cerebral Cortex, 8, 18–27. First citation in articleCrossrefGoogle Scholar

  • Fuster, J. M. (1998). The Prefrontal Cortex. 3rd Edition. New York: Raven Press. First citation in articleGoogle Scholar

  • Gold, J. M. , Berman, K. F. , Randolph, C. , Goldberg, T. E. , Weinberger, D. R. (1996). PET Validation of a Novel Prefrontal Task: Delayed Response Alternation. Neuropsychology, 10, 3 – 10. First citation in articleCrossrefGoogle Scholar

  • Goldstein, R. Z. , Volkow, N. D. , Wang, G. J. , Fowler, J. S. , Rajaram, S. (2001). Addiction changes orbitofrontal gyrus function: involvement in response inhibition. Neuroreport, 12, 2595–2599. First citation in articleCrossrefGoogle Scholar

  • Hautzinger, M. , Bailer, M. , Worall, H. , Keller, F. (1994). Beck – Depressions – Inventar (BDI). Bern: Huber. First citation in articleGoogle Scholar

  • Hildebrandt, H. , Brokate, B. , Eling, P. , Lanz, M. (2004). Executive functions, but not working memory, are impaired after long-term heavy alcohol consumption. Neuropsychology, 18, 203–211. First citation in articleCrossrefGoogle Scholar

  • Hildebrandt, H. , Brokate, B. , Hoffmann, E. , Kröger, B. , Eling, P. (2006). Conditional responding, but not decision-making is impaired in alcohol-dependent participants without amnesia. Journal of Experimental and Clinical Neuropsychology, 28, 631–645. First citation in articleCrossrefGoogle Scholar

  • Horn W. (1983). Leistungsprüfsystem (LPS). Bern: Huber. First citation in articleGoogle Scholar

  • Ihara, H. , Berrios, G. E. , & London, M. (2000). Group and Case Study of the dysexecutive syndrome in alcoholism without amnesia. Journal of Neurology and Neurosurgery Psychiatry, 68, 731–737. First citation in articleCrossrefGoogle Scholar

  • International Classification of Diseases and related health problems (ICD 10). (1994). München: Urban und Schwarzenberg. First citation in articleGoogle Scholar

  • Iversen, S. D. , Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 376–386. First citation in articleCrossrefGoogle Scholar

  • Jonides, J. , Marshuetz, C. , Smith, E. E. , Reuter-Lorenz, P. , Koeppe R. A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory. Journal of Cognitive Neuroscience, 12, 188–196. First citation in articleCrossrefGoogle Scholar

  • Jonides, J. , Smith, E. E. , Marshuetz, C. , Koeppe, R. A. , Reuter-Lorenz, P. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Acadademy of Sciences, 95, 8410–8413. First citation in articleCrossrefGoogle Scholar

  • Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic Experience. Nature Reviews. Neuroscience, 6, 691 – 702. First citation in articleCrossrefGoogle Scholar

  • Lehrl, S. , Merz, J. , Burkard, G. , Fischer, B. (1991). Mehrfachwahl – Wortschatz – Intelligenztest (MWT – A). Erlangen: Perimed Fachbuchverlagsgesellschaft. First citation in articleGoogle Scholar

  • Mann, K. , Günter, A. , Stetter, F. , Ackermann, K. (1999). Rapid recovery from cognitive deficits in abstinent alcoholics: a controlled test- retest study. Alcohol and Alcoholism, 34, 567 – 574. First citation in articleCrossrefGoogle Scholar

  • Mishkin, M. , Manning, F. J. (1978). Non-spatial memory after selective prefrontal lesions in monkeys. Brain Research, 143, 313–323. First citation in articleCrossrefGoogle Scholar

  • Moselhy, H. F. , Georgiou, G. , Kahn, A. (2001). Frontal lobe changes in alcoholism: A review of the literature. Alcohol and Alcoholism, 36, 357–368. First citation in articleCrossrefGoogle Scholar

  • Munro, C. A. , Saxton, J. , Butters, M. A. (2000). The neuropsychological consequences of abstinence among older alcoholics: a cross-sectional study. Alcoholism: Clinical and Experimental Research, 24, 1510–1516. First citation in articleCrossrefGoogle Scholar

  • Noël, X , van der Linden, M , Schmidt, N , Sferrazza, R , Hanak, C , Le Bon O, De Mol , J, Kornreich , C, Pelc , I, Verbanck , P. (2001). Supervisory attentional system in nonamnesic alcoholic men. Archives of General Psychiatry, 58, 1152–1158. First citation in articleCrossrefGoogle Scholar

  • Noël, X. , Colmant, M. , van der Linden, M. , Bechara, A. , Bullens, Q. , Hanak,C., Verbanck , P. (2006). Time course of attention for alcohol cues in abstinent alcoholic patients: the role of initial orienting. Alcoholism: Clinical and Experimental Research, 30, 1871–1877. First citation in articleCrossrefGoogle Scholar

  • Oscar-Berman, M. , Zola-Morgan, S. , Öberg, R. G. E. , Bonner, R. T. (1982). Comparative Neuropsychology and Korsakoff‘s Syndrome. III-Delayed Response, Delayed Alternation and DRL Performance. Neuropsychologia, 20, 187 – 202. First citation in articleCrossrefGoogle Scholar

  • Oscar-Berman, M. , Shagrin, B. , Evert, D. L. , Epstein, C. (1997). Impairments of Brain and Behavior. The Neurological Effects of Alcohol. Alcohol Health & Research World, 21, 65 – 75. First citation in articleGoogle Scholar

  • Oscar- Berman, M. , Kirkley, S. M. , Gansler, D. A. , Couture, A. (2004). Comparison of Korsakoff and non-Korsakoff alcoholics on neuropsychological tests of prefrontal brain functioning. Alcoholism: Clinical and Experimental Research, 28, 667 – 675. First citation in articleCrossrefGoogle Scholar

  • Pfefferbaum, A. , Sullivan, E V. (2005). Disruption of Brain White Matter Microstructure by Excessive Intracellular and Extracellular Fluid in Alcoholism: Evidence from Diffusion Tensor Imaging. Neuropsychopharmacology, 30, 423 – 432. First citation in articleCrossrefGoogle Scholar

  • Ratti, M. T. , Bo, P. , Giardini, A. , Soragna, D. (2002). Chronic Alcoholism and the frontal lobe: which executive functions are impaired? Acta neurologica Scandinavica, 105, 276–281. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. E. , Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25 – 53. First citation in articleCrossrefGoogle Scholar

  • Rupp, C. I. , Fleischhacker, W. W. , Drexler, A. , Hausmann, A. , Hinterhuber, H. , Kurz, M. (2006). Executive Function and Memory in Relation to Olfactory Deficits in Alcohol-dependent Patients. Alcoholism: Clinical and Experimental Research, 30, 1355 – 1362. First citation in articleCrossrefGoogle Scholar

  • Schandler, S. L. , Clegg, A. D. , Thomas, C. S. , Cohen, M. J. (1996). Visuospatial information processing in intoxicated, recently detoxified, and long-term abstinent alcoholics. Journal of Substance Abuse, 8, 321–333. First citation in articleCrossrefGoogle Scholar

  • Selzer, M.–L. (1971). The Michigan alcoholism screening test: the quest for a new diagnostic instrument. American Journal of Psychiatry, 127, 1653–1658. First citation in articleCrossrefGoogle Scholar

  • Sullivan, E. V. , Rosenbloom, M. J. , Pfefferbaum, A. (2000). Pattern of motor and cognitive deficits in detoxified alcoholic men. Alcoholism: Clinical and Experimental Research, 24, 611 – 621. First citation in articleCrossrefGoogle Scholar

  • Sullivan, E. V. , Fama, R. , Rosenbloom, M. J. , Pfefferbaum, A. (2002). A Profile of Neuropsychological Deficits in Alcoholic Women. Neuropsychology, 16, 74 – 83. First citation in articleCrossrefGoogle Scholar

  • Taber, K. H. , Hurley, R. A. , Abi-Dargham, A. , Porjesz, B. (2000). Cortical Inhibition in Alcohol Dependence. Journal of Neuropsychiatry and Clinical Neuroscience, 12, 173 – 176. First citation in articleCrossrefGoogle Scholar

  • Tapert, S. F. , Brown, G. G. , Kindermann, S. S. , Cheung, E. H. , Frank, L. R. , Brown, S. A. (2001). fMRI Measurement of Brain Dysfunction in Alcohol- Dependent Young Women. Alcoholism: Clinical an Experimental Research, 25, 236 – 245. First citation in articleCrossrefGoogle Scholar

  • Tiffany, S. T. (1990). A cognitive model of drug urges and drug- use behavior: role of automatic and non automatic responses. Psychological Review, 97, 147 – 168. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Wang, G.–J. , Hitzemann, R. , Fowler, J. S. , Overall, J. E. (1994). Recovery of brain glucose metabolism in detoxified alcoholics. American Journal of Psychiatry, 151, 178–183. First citation in articleCrossrefGoogle Scholar

  • Volkow. N. D., Wang , G.–J., Overall , J. E., Hitzemann , R., Fowler , J. S. (1997). Regional brain metabolic response to Lorazepam in alcoholics during early and late alcohol detoxification. Alcoholism: Clinical and Experimental Research, 21, 1278–1284. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Fowler, J. S. , Wang, G. J. (2003). The addicted human brain: insights from imaging studies. The Journal of Clinical Investigation, 111, 1444–1451. First citation in articleCrossrefGoogle Scholar

  • Wegner, A. J. , Günthner, A. , Fahle, M. (2001). Visual performance and Recovery in recently detoxified Alcoholics. Alcohol and Alcoholism, 36, 171–179. First citation in articleCrossrefGoogle Scholar

  • Zald, D. H. , Folley, B. S. , Pardo, J. V. (2002). Prefrontal Contributions to Delayed Spatial and Object Alternation: A Positron Emission Tomography Study. Neuropsychology, 16, 182 – 189. First citation in articleCrossrefGoogle Scholar

  • Zald, D. H. , Curtis, C. , Chernitsky, L. A. , Pardo, J. V. (2005). Frontal Lobe Activation During Object Alternation Acquisition. Neuropsychology, 19, 97 – 105. First citation in articleCrossrefGoogle Scholar

  • Zinn, S. , Stein, R. , Swartzwelder, H. S. (2004). Executive functioning early in Abstinence from alcohol. Alcoholism: Clinical and Experimental Research, 28, 1338–1346. First citation in articleCrossrefGoogle Scholar