Skip to main content
Originalartikel

Modelle der Substanzabhängigkeit

Neurobiologische und neuropsychologische Modelle der Substanzabhängigkeit

Published Online:https://doi.org/10.1024/1016-264X/a000015

Neurobiologische Modelle der Substanzabhängigkeit postulieren, dass Abhängigkeit aus einem Zusammenspiel zwischen positiver und negativer Verstärkung entsteht. Die positive Verstärkung wird über die dopaminerge Transmission im Striatum vermittelt, während die negative Verstärkung die neurobiologischen Stresssysteme involviert. Abhängigkeit geht mit lang anhaltenden Änderungen der zerebralen Motivationssysteme einher. Neuropsychologische Forschungsarbeiten weisen auf ein beeinträchtigtes Entscheidungsverhalten hin, welches mit einer Dysfunktion im ventromedialen präfrontalen Kortex zusammenhängen könnte. Sie betonen die Rolle der Insula, welche die neuronale Grundlage für die fehlende Einsicht ins problematische Suchtverhalten als auch für die Vermittlung des bewussten Drangs, die Substanz zu konsumieren, sein könnte. Neurobiologische und neuropsychologische Sichtweisen werden in einem Modell integriert, das impulsive subkortikale und dopamin-bezogene Prozesse mit einer Beeinträchtigung der kortikalen Hemmung und kognitiven Defiziten verbindet.


Neurobiological and Neuropsychological Perspectives on Substance Dependence

Neurobiological models of substance dependence hypothesize that addiction results from interplay between positive and negative reinforcement. Positive reinforcing effects of drugs are mediated through dopamine transmission in the striatum, while negative reinforcement involves the central stress systems. Substance dependence leads to persistent changes in the brain motivational systems. Neuropsychological research showed impairment in decision-making that could be related to a dysfunction in the ventromedial prefrontal cortex. A further critical region is the insula that could be involved in the impaired insight in addictive behaviour and in the mediation of the conscious urge to take the drug. Neurobiological and neuropsychological perspectives are integrated here in a model combining impulsive subcortical and dopamine-related processes with dysfunction of cortical inhibition and cognitive deficits.

Literatur

  • Agrawal, A. & Lynskey, M. T. (2008). Are there genetic influences on addiction: Evidence from family, adoption and twin studies. Addiction, 103, 1069–1081. First citation in articleCrossrefGoogle Scholar

  • Aharon, I. , Etcoff, N. , Ariely, D. , Chabris, C. F. , O’Connor, E. , Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32, 537–551. First citation in articleCrossrefGoogle Scholar

  • Al’absi, M. , Hatsukami, D. K. , Davis, G. (2005). Attenuated adrenocorticotropic responses to psychological stress are associated with early smoking relapse. Psychopharmacology (Berl.), 181, 107–117. First citation in articleCrossrefGoogle Scholar

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author. First citation in articleGoogle Scholar

  • Anthony, J. C. , Petronis, K. R. (1995). Early-onset drug use and risk of later drug problems. Drug and Alcohol Dependence, 40(1), 9–15. First citation in articleCrossrefGoogle Scholar

  • Aosaki, T. , Graybiel, A. M. , Kimura, M. (1994). Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science, 265, 412–415. First citation in articleCrossrefGoogle Scholar

  • Aosaki, T. , Tsubokawa, H. , Ishida, A. , Watanabe, K. , Graybiel, A. M. , Kimura, M. (1994). Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. The Journal of Neuroscience, 14, 3969–3984. First citation in articleCrossrefGoogle Scholar

  • Ball, E. L. (2007). HIV, injecting drug use and harm reduction: A public health response. Addiction, 102, 684–690. First citation in articleCrossrefGoogle Scholar

  • Baxter, M. G. , Murray, E. A. (2002). The amygdala and reward. Nature Reviews Neuroscience, 3, 563–573. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. (2003). Risky business: Emotion, decision-making, and addiction. Journal of Gambling Studies, 19(1), 23–51. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. (2004). Disturbances of emotion regulation after focal brain lesions. International Review of Neurobiology, 62, 159–193. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8, 1458–1463. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. , Damasio, A. R. , Damasio, H. & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1–3), 7–15. First citation in articleCrossrefGoogle Scholar

  • Berns, G. S. , McClure, S. M. , Pagnoni, G. , Montague, P. R. (2001). Predictability modulates human brain response to reward. The Journal of Neuroscience, 21, 2793–2798. First citation in articleCrossrefGoogle Scholar

  • Blood, A. J. , Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences USA, 98, 11818–11823. First citation in articleGoogle Scholar

  • Böning, J. (2001). Neurobiology of an addiction memory. Journal of Neurotransmission, 108, 755–765. First citation in articleGoogle Scholar

  • Breese, G. R. , Chu, K. , Dayas, C. V. , Funk, D. , Knapp, D. J. , Koob, G. F. , ... Weiss, F. (2005). Stress enhancement of craving during sobriety and the risk of relapse. Alcoholism: Clinical and Experimental Research, 29, 185–195. First citation in articleCrossrefGoogle Scholar

  • Chen, J. P. , Paredes, W. , Lowinson, J. H. , Gardner, E. L. (1991). Strain-specific facilitation of dopamine efflux by delta 9-tetrahydrocannabinol in the nucleus accumbens of rat: An in vivo microdialysis study. Neuroscience Letters, 129(1), 136–180. First citation in articleCrossrefGoogle Scholar

  • Cooney, N. L. , Litt, M. D. , Morse, P. A. , Bauer, L. , Gaupp, L. (1997). Alcohol cue reactivity, negative-mood reactivity, and relapse in treated alcoholic men. Journal of Abnormal Psychology, 106, 243–250. First citation in articleCrossrefGoogle Scholar

  • Corrigall, W. , Franklin, K. , Coen, K. , Clarke, P. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology, 107, 285–289. First citation in articleCrossrefGoogle Scholar

  • Cox, S. M. L. , Andrade, A. , Johnsrude, I. S. (2005). Learning to like: A role for the human orbitofrontal cortex in conditioned reward. The Journal of Neuroscience, 25, 2733–2740. First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70. First citation in articleCrossrefGoogle Scholar

  • Crow, T. J. (1968). Enhancement by cocaine of intracranial self-stimulation in the rat. Life Sciences, 9, 375–338. First citation in articleCrossrefGoogle Scholar

  • Crow, T. J. & Deakin, J. F. W. (1978). Brain reinforcement centers and psychoactive drugs. Research Advances in Alcohol and Drug Problems, 4, 25–76. First citation in articleCrossrefGoogle Scholar

  • Delgado, M. R. , Frank, R. H. , Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8, 1611–1618. First citation in articleCrossrefGoogle Scholar

  • Deutsche Hauptstelle für Suchtfragen. (Hrsg). (2005). Jahrbuch Sucht 2005. Geesthacht: Neuland. First citation in articleGoogle Scholar

  • Di Chiara, G. (1999). Drug addiction as dopamine-dependent associative learning disorder. European Journal of Pharmacology, 375(1–3), 13–30. First citation in articleCrossrefGoogle Scholar

  • Di Chiara, G. , Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences USA, 85, 5274–5278. First citation in articleGoogle Scholar

  • Di Chiara, G. , Tanda, G. , Cadoni, C. , Acquas, E. , Bassareo, V. & Carboni, E. (1998). Homologies and differences in the action of drugs of abuse and a conventional reinforcer (food) on dopamine transmission: An interpretative framework of the mechanism of drug dependence. Advances in Pharmacology, 42, 983–987. First citation in articleCrossrefGoogle Scholar

  • Dilling, H. , Mombour, W. , Schmidt, M. H. (2000). Internationale Klassifikation psychischer Störungen: ICD-10, Kapitel V (F), klinisch-diagnostische Leitlinien. Weltgesundheitsorganisation. Bern: Huber. First citation in articleGoogle Scholar

  • Doyon, W. M. , York, J. L. , Diaz, L. M. , Samson, H. H. , Czachowski, C. L. , Gonzales, R. A. (2003). Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcoholism: Clinical and Experimental Research, 27, 1573–1582. First citation in articleCrossrefGoogle Scholar

  • Drevets, W. C. , Gautier, C. , Price, J. C. , Kupfer, D. J. , Kinahan, P. E. , Grace, A. A. , ... Mathis, C. A. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96. First citation in articleCrossrefGoogle Scholar

  • Dubois-Arber, F. , Balthasar, H. , Huissoud, T. , Zobel, F. , Arnaud, S. , Samitca, S. , ... Gervasoni, J. P. (2008). Trends in drug consumption and risk of transmission of HIV and hepatitis C virus among injecting drug users in Switzerland, 1993–2006. Eurosurveillance, 13(4–6), 1–6. First citation in articleCrossrefGoogle Scholar

  • Elliott, R. , Newman, J. L. , Longe, O. A. & Deakin, J. F. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: A parametric functional magnetic resonance imaging study. The Journal of Neuroscience, 23, 303–307. First citation in articleCrossrefGoogle Scholar

  • Everitt, B. J. , Cardinal, R. N. , Parkinson, J. A. , Robbins, T. W. (2003). Appetitive behavior: Impact of amygdala-dependent mechanisms of emotional learning. Annals of the New York Academy of Sciences, 985, 233–250. First citation in articleCrossrefGoogle Scholar

  • Everitt, B. J. , Dickinson, A. , Robbins, T. W. (2001). The neurobiological basis of addictive behaviour. Brain Research Reviews, 36, 129–138. First citation in articleCrossrefGoogle Scholar

  • Feil, J. , Sheppard, D. , Fitzgerald, P. B. , Yucel, M. , Lubman, D. I. , Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience and Biobehavioral Reviews. First citation in articleGoogle Scholar

  • FitzGerald, T. H. , Seymour, B. , Dolan, R. J. (2009). The role of human orbitofrontal cortex in value comparison for incommensurable objects. The Journal of Neuroscience, 29, 8388–8395. First citation in articleCrossrefGoogle Scholar

  • Garavan, H. & Hester, R. (2007). The role of cognitive control in cocaine dependence. Neuropsychology Review, 17, 337–345. First citation in articleCrossrefGoogle Scholar

  • Garavan, H. & Stout, J. C. (2005). Neurocognitive insights into substance abuse. Trends in Cognitive Sciences, 9, 195–201. First citation in articleCrossrefGoogle Scholar

  • Gardner, E. L. (1999). The neurobiology and genetics of addiction: Implications of the «reward deficiency syndrome» for therapeutic strategies in chemical dependency. In J. Elster (Ed.), Addiction: Entries and exits (pp. 57–119). New York: Russell Sage. First citation in articleGoogle Scholar

  • Gehrlich, M. , Gschwend, P. , Uchtenhagen, A. , Kraemer, A. , Rehm, J. (2006). Prevalence of hepatitis and HIV infections and vaccination rates in patients entering the heroin-assisted treatment in Switzerland between 1994 and 2002. European Journal of Epidemiology, 21, 545–549. First citation in articleCrossrefGoogle Scholar

  • Goldstein, R. Z. , Craig, A. D. , Bechara, A. , Garavan, H. , Childress, A. R. , Paulus, M. P. , Volkow, N. D. (2009). The neurocircuitry of impaired insight in drug addiction. Trends in Cognitive Sciences, 13, 372–380. First citation in articleCrossrefGoogle Scholar

  • Gottfried, J. , O’Doherty, J. P. , Dolan, R. J. (2002). Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. The Journal of Neuroscience, 22, 10829–10837. First citation in articleCrossrefGoogle Scholar

  • Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301, 1104–1107. First citation in articleCrossrefGoogle Scholar

  • Gruber, S. A. , Silveri, M. M. , Yurgelun-Todd, D. A. (2007). Neuropsychological consequences of opiate use. Neuropsychology Review, 17, 299–315. First citation in articleCrossrefGoogle Scholar

  • Grüsser, S. M. , Thaleman, C. N. (2006). Verhaltenssucht. Diagnostik, Therapie, Forschung. Bern: Huber. First citation in articleGoogle Scholar

  • Heimer, L. & Alheid, G. F. (1991). Piecing together the puzzle of basal forebrain anatomy. Advances in Experimental Medicine and Biology, 295, 1–42. First citation in articleCrossrefGoogle Scholar

  • Heimer, L. , Alheid, G. F. , Zahm, D. S. (1993). Basal forebrain organization: An anatomical framework for motor aspects of drive and motivation. In P. W. Kalivas, C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 1–43). Boca Raton: CRC Press. First citation in articleGoogle Scholar

  • Heinz, A. , Siessmeier, T. , Wrase, J. , Hermann, D. , Klein, S. , Grusser, S. M. , ... Bartenstein, P. (2004). Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161, 1783–1789. First citation in articleCrossrefGoogle Scholar

  • Hester, R. , Nestor, L. & Garavan, H. (2009). Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology, 34, 2450–2458. First citation in articleCrossrefGoogle Scholar

  • Jentsch, J. & Taylor, J. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373–390. First citation in articleCrossrefGoogle Scholar

  • Jentsch, J. D. , Roth, R. H. , Taylor, J. R. (2000). Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: Implications for mental disorders and psychotropic drug action. Progress in Brain Research, 126, 433–453. First citation in articleCrossrefGoogle Scholar

  • Karnath, H. O. , Baier, B. , Nagele, T. (2005). Awareness of the functioning of one’s own limbs mediated by the insular cortex? The Journal of Neuroscience, 25, 7134–7138. First citation in articleCrossrefGoogle Scholar

  • Khokhar, J. Y. , Ferguson, C. S. , Zhu, A. Z. , Tyndale, R. F. (2010). Pharmacogenetics of drug dependence: Role of gene variations in susceptibility and treatment. Annual Review of Pharmacology and Toxicology, 50, 39–61. First citation in articleCrossrefGoogle Scholar

  • Kim, J. (2007). The role of alcoholic’s insight in abstinence from alcohol in male Korean alcohol dependent. Journal of Korean Medical Science, 22, 132–137. First citation in articleCrossrefGoogle Scholar

  • Kirsch, P. , Schienle, A. , Stark, R. , Sammer, G. , Blecker, C. , Walter, B. , ... Vaitl, D. (2003). Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: An event-related fMRI study. Neuroimage, 20, 1086–1095. First citation in articleCrossrefGoogle Scholar

  • Knutson, B. , Fong, G. W. , Adams, C. M. , Varner, J. L. , Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12, 3683–3687. First citation in articleCrossrefGoogle Scholar

  • Knutson, B. , Fong, G. W. , Bennett, S. M. , Adams, C. M. , Hommerb, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. Neuroimage, 18, 263–272. First citation in articleCrossrefGoogle Scholar

  • Knutson, B. & Wimmer, G. E. (2007). Splitting the difference: How does the brain code reward episodes? Annals of the New York Academy of Sciences, 1104, 54–69. First citation in articleCrossrefGoogle Scholar

  • Koob, G. (2004). Allostatic view of motivation: Implications for psychopathology. In R. A. Bevins, M. T. Bardo (Eds.), Motivational factors in the etiology of drug abuse, Nebraska Symposium on Motivation (Vol. 50, pp. 1–18). Lincoln, NE: University of Nebraska Press. First citation in articleGoogle Scholar

  • Koob, G. (2009). Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology, 56(1), 18–31. First citation in articleCrossrefGoogle Scholar

  • Koob, G. & LeMoal, M. (1997). Drug abuse: Hedonic homeostatic dysregulation. Science, 278, 52–58. First citation in articleCrossrefGoogle Scholar

  • Koob, G. F. (2008). A role for brain stress systems in addiction. Neuron, 59, 11–34. First citation in articleCrossrefGoogle Scholar

  • Koob, G. F. (2009). Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology, 56(Suppl. 1), 18–31. First citation in articleCrossrefGoogle Scholar

  • Kraus, L. , Augustin, R. , Frischer, M. , Kümmler, P. , Uhl, A. , Wiessing, L. (2003). Estimating prevalence of problem drug use at national level in countries of the European Union and Norway. Addiction, 98, 471–485. First citation in articleCrossrefGoogle Scholar

  • Kreek, M. J. , Nielsen, D. A. , LaForge, K. S. (2004). Genes associated with addiction: Alcoholism, opiate, and cocaine addiction. Neuromolecular Medicine, 5(1), 85–108. First citation in articleCrossrefGoogle Scholar

  • Li, M. D. & Burmeister, M. (2009). New insights into the genetics of addiction. Nature Reviews Genetics, 10, 225–231. First citation in articleCrossrefGoogle Scholar

  • Li, M. D. , Cheng, R. , Ma, J. Z. & Swan, G. E. (2003). A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction, 98(1), 23–31. First citation in articleCrossrefGoogle Scholar

  • London, E. , Ernst, M. , Grant, S. , Bonson, K. & Weinstein, A. (2000). Orbitofrontal cortex and human drug abuse: Functional imaging. Cerebral Cortex, 10, 334–342. First citation in articleCrossrefGoogle Scholar

  • Luo, S. , Ainslie, G. , Giragosian, L. , Monterosso, J. R. (2009). Behavioral and neural evidence of incentive bias for immediate rewards relative to preference-matched delayed rewards. The Journal of Neuroscience, 29, 14820–14827. First citation in articleCrossrefGoogle Scholar

  • Martin-Soelch, C. (2002). Reward and dependence. Bern: Peter Lang. First citation in articleGoogle Scholar

  • Martin-Soelch, C. , Chevalley, A. F. , Künig, G. , Missimer, J. , Magyar, S. , Mino, A. , ... Leenders, K. L. (2001). Changes in reward-induced brain activation in opiate addicts. European Journal of Neuroscience, 14, 1360–1368. First citation in articleCrossrefGoogle Scholar

  • Martin-Soelch, C. , Kobel, M. , Stoecklin, M. , Michael, T. , Weber, S. , Krebs, B. , Opwis, K. (2009). Reduced response to reward in smokers and cannabis users. Neuropsychobiology, 60, 94–103. First citation in articleCrossrefGoogle Scholar

  • Martin-Soelch, C. , Magyar, S. , Künig, G. , Missimer, J. , Schultz, W. & Leenders, K. L. (2001). Changes in brain activation associated with reward processing in smokers and nonsmokers: A PET study. Experimental Brain Research, 139, 278–386. First citation in articleCrossrefGoogle Scholar

  • Martin-Soelch, C. , Missimer, J. , Leenders, K. & Schultz, W. (2003). Neural activity related to the processing of increasing monetary reward in smokers and nonsmokers. European Journal of Neuroscience, 18, 680–688. First citation in articleCrossrefGoogle Scholar

  • Martinez, D. , Slifstein, M. , Broft, A. , Mawlawi, O. , Hwang, D. R. , Huang, Y. , ... Laruelle, M. (2003). Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: Amphetamine-induced dopamine release in the functional subdivisions of the striatum. Journal of Cerebral Blood Flow and Metabolism, 23, 285–300. First citation in articleCrossrefGoogle Scholar

  • McCabe, C. , Mishor, Z. , Cowen, P. J. , Harmer, C. J. (2010). Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biological Psychiatry, 67, 439–445. First citation in articleCrossrefGoogle Scholar

  • McLennan, J. D. , Shaw, E. , Shema, S. J. , Gardner, W. P. , Pope, S. K. & Kelleher, K. J. (1998). Adolescents’ insight in heavy drinking. Journal of Adolescent Health, 22, 409–416. First citation in articleCrossrefGoogle Scholar

  • Müller, R. , Meyer, M. , Gmel, G. E. (1997). Alkohol, Tabak und illegale Drogen in der Schweiz 1994–1996. Lausanne: Schweizerische Fachstelle für Alkohol und andere Drogenprobleme (SFA). First citation in articleGoogle Scholar

  • Murray, C. J. , Lopez, A. D. (1996). The Global Burden of Disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Cambridge: Harvard University Press. First citation in articleGoogle Scholar

  • Murray, C. J. , Lopez, A. D. (1997). Global mortality, disability, and the contribution of risk factors: Global Burden of Disease study. The Lancet, 349, 1463–1442. First citation in articleCrossrefGoogle Scholar

  • Naqvi, N. H. , Bechara, A. (2009). The hidden island of addiction: The insula. Trends in Neuroscience, 32(1), 56–67. First citation in articleCrossrefGoogle Scholar

  • Naqvi, N. H. , Rudrauf, D. , Damasio, H. , Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315, 531–534. First citation in articleCrossrefGoogle Scholar

  • Nisell, M. , Nomikos, G. G. , Svensson, T. H. (1994). Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse, 16, 36–44. First citation in articleCrossrefGoogle Scholar

  • Nordt, C. , Landolt, K. & Stohler, R. (2009). Estimating incidence trends in regular heroin use in 26 regions of Switzerland using methadone treatment data. Substance Abuse Treatment, Prevention, and Policy, 4, 14. First citation in articleCrossrefGoogle Scholar

  • Nurco, D. N. , Kinlock, T. W. , O’Grady, K. E. , Hanlon, T. E. (1996). Early family adversity as a precursor to narcotic addiction. Drug and Alcohol Dependence, 43(1–2), 103–113. First citation in articleCrossrefGoogle Scholar

  • O’Doherty, J. , Dayan, P. , Schultz, J. , Deichmann, R. , Friston, K. J. , Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452–454. First citation in articleCrossrefGoogle Scholar

  • O’Doherty, J. , Deichmann, R. , Critchley, H. D. , Dolan, R. J. (2004). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815–826. First citation in articleCrossrefGoogle Scholar

  • Olds, J. , Killam, K. F. , Bach-y-Rita, P. (1956). Self-stimulation of the brain used as a screening method for tranquillizing drugs. Science, 124, 265. First citation in articleCrossrefGoogle Scholar

  • Olds, J. & Milner, P. M. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427. First citation in articleCrossrefGoogle Scholar

  • Padoa-Schioppa, C. , Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441, 223–226. First citation in articleCrossrefGoogle Scholar

  • Pappata, S. , Dehaene, S. , Poline, J. B. , Gregoire, M. C. , Jobert, A. , Delforge, J. , ... Syrota, A. (2002). In vivo detection of striatal dopamine release during reward: A PET study with [(11)C]raclopride and a single dynamic scan approach. Neuroimage, 16, 1015–1027. First citation in articleCrossrefGoogle Scholar

  • Paulus, M. P. , Tapert, S. F. , Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62, 761–768. First citation in articleCrossrefGoogle Scholar

  • Pessiglione, M. , Petrovic, P. , Daunizeau, J. , Palminteri, S. , Dolan, R. J. , Frith, C. D. (2008). Subliminal instrumental conditioning demonstrated in the human brain. Neuron, 59, 561–567. First citation in articleCrossrefGoogle Scholar

  • Pettit, H. O. , Justice, J. B., Jr. (1989). Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacology, Biochemistry, and Behavior, 34, 899–904. First citation in articleCrossrefGoogle Scholar

  • Pontieri, F. E. , Tanda, G. , Di Chiara, G. (1995). Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the «shell» as compared with the «core» of the rat nucleus accumbens. Proceedings of the National Academy of Sciences USA, 92, 12304–12308. First citation in articleGoogle Scholar

  • Pontieri, F. E. , Tanda, G. , Orzi, F. , Di Chiara, G. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382, 255–257. First citation in articleCrossrefGoogle Scholar

  • Rilling, J. , Gutman, D. , Zeh, T. , Pagnoni, G. , Berns, G. & Kilts, C. (2002). A neural basis for social cooperation. Neuron, 35, 395–405. First citation in articleCrossrefGoogle Scholar

  • Rilling, J. K. , Sanfey, A. G. , Aronson, J. A. , Nystrom, L. E. , Cohen, J. D. (2004). Opposing BOLD responses to reciprocated and unreciprocated altruism in putative reward pathways. NeuroReport, 15, 2539–2543. First citation in articleGoogle Scholar

  • Robbins, T. W. , Everitt, B. J. (2002). Limbic-striatal memory systems and drug addiction. Neurobiology of Learning and Memory, 78, 625–636. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. , Berridge, K. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95(Suppl. 2), 91–117. First citation in articleGoogle Scholar

  • Rodgers, A. , Ezzati, M. , Vander Hoorn, S. , Lopez, A. D. , Lin, R. B. , Murray, C. J. (2004). Distribution of major health risks: Findings from the Global Burden of Disease study. Public Library of Science Medicine, 1(1), e27. First citation in articleGoogle Scholar

  • Rogers, R. , Owen, A. , Middleton, H. , Williams, E. , Pickard, J. , Sahakian, B. , Robbins, T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activate inferior and orbital prefrontal cortex. The Journal of Neuroscience, 19, 9028–9038. First citation in articleCrossrefGoogle Scholar

  • SAMHSA. (2007). Results from the 2006 National Survey on Drug use and Health: National findings. DHHS. First citation in articleGoogle Scholar

  • Sass, H. , Wittchen, H. U. , Zaudig, M. , Houben, I. (2003). Diagnostisches und Statistisches Manual Psychischer Störungen DSM-IV-TR. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schaub, M. , Fanghaenel, K. , Stohler, R. (2008). Reasons for cannabis use: Patients with schizophrenia versus matched healthy controls. Australian and New Zealand Journal of Psychiatry, 42, 1060–1065. First citation in articleCrossrefGoogle Scholar

  • Schmid, H. (1996). Das Risiko «Droge». Paper presented at the Tagungsbeiträge des 10. Seminars der SFA, Lausanne. First citation in articleGoogle Scholar

  • Schott, B. H. , Minuzzi, L. , Krebs, R. M. , Elmenhorst, D. , Lang, M. , Winz, O. H. , ... Bauer, A. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. The Journal of Neuroscience, 28, 14311–14319. First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207. First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115. First citation in articleCrossrefGoogle Scholar

  • Schultz, W. , Apicella, P. , Ljunberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. The Journal of Neuroscience, 13, 900–913. First citation in articleCrossrefGoogle Scholar

  • Sell, L. , Morris, J. , Beam, J. , Frackowiak, R. , Friston, K. , Dolan, R. (1999). Activation of reward circuitry in human opiate addicts. European Journal of Neuroscience, 11, 1042–1048. First citation in articleCrossrefGoogle Scholar

  • Seymour, B. , O’Doherty, J. P. , Dayan, P. , Koltzenburg, M. , Jones, A. K. , Dolan, R. J. , ... Frackowiak, R. S. (2004). Temporal difference models describe higher-order learning in humans. Nature, 429, 664–667. First citation in articleCrossrefGoogle Scholar

  • Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105–130. First citation in articleCrossrefGoogle Scholar

  • Sinha, R. , Garcia, M. , Paliwal, P. , Kreek, M. J. , Rounsaville, B. J. (2006). Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Archives of General Psychiatry, 63, 324–331. First citation in articleCrossrefGoogle Scholar

  • Sinha, R. A. , Kimmerling, C. , Doebrick. (2007). Effects of lofexidine on stress-induced and cue-induced opioid craving and opioid abstinence rates: Preliminary findings. Psychopharmacology, 190, 569–574. First citation in articleCrossrefGoogle Scholar

  • Smith, R. & Aston-Jones, G. (2008). Noradrenergic transmission in the extended amygdala: Role in increased drug-seeking and relapse during protracted drug abstinence. Brain Structure and Function, 213, 43–61. First citation in articleCrossrefGoogle Scholar

  • Solomon, R. L. (1980). The opponent-process theory of acquired motivation. American Psychologist, 35, 691–712. First citation in articleCrossrefGoogle Scholar

  • Steinberg, L. , Albert, D. , Cauffman, E. , Banich, M. , Graham, S. & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: Evidence for a dual systems model. Developmental Psychology, 44, 1764–1778. First citation in articleCrossrefGoogle Scholar

  • Tabibnia, G. , Lieberman, M. D. (2007). Fairness and cooperation are rewarding: Evidence from social cognitive neuroscience. Annals of the New York Academy of Sciences, 1118, 90–101. First citation in articleCrossrefGoogle Scholar

  • Tabibnia, G. , Satpute, A. B. , Lieberman, M. D. (2008). The sunny side of fairness: preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19, 339–347. First citation in articleCrossrefGoogle Scholar

  • Tanda, G. , Pontieri, F. E. , Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science, 276, 2048–2050. First citation in articleCrossrefGoogle Scholar

  • Tobler, P. N. , Dickinson, A. , Schultz, W. (2003). Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. The Journal of Neuroscience, 23, 10402–10410. First citation in articleCrossrefGoogle Scholar

  • Tremblay, L. , Hollerman, J. R. , Schultz, W. (1998). Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology, 80, 964–977. First citation in articleCrossrefGoogle Scholar

  • Tremblay, L. , Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398, 704–708. First citation in articleCrossrefGoogle Scholar

  • Tremblay, L. , Schultz, W. (2000). Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. Journal of Neurophysiology, 83, 1864–1876. First citation in articleCrossrefGoogle Scholar

  • True, W. R. , Xian, H. , Scherrer, J. F. , Madden, P. A. , Bucholz, K. K. , Heath, A. C. , ... Tsuang, M. (1999). Common genetic vulnerability for nicotine and alcohol dependence in men. Archives of General Psychiatry, 56, 655–661. First citation in articleCrossrefGoogle Scholar

  • Tsuang, M. T. , Lyons, M. J. , Eisen, S. A. , Goldberg, J. , True, W. , Lin, N. , ... Eaves, L. (1996). Genetic influences on DSM-III-R drug abuse and dependence: A study of 3,372 twin pairs. American Journal of Medical Genetics, 67, 473–477. First citation in articleCrossrefGoogle Scholar

  • Uhl, G. , Blum, K. , Noble, E. & Smith, S. (1993). Substance abuse vulnerability and D2 receptor genes. Trends in Neuroscience, 16, 83–88. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Fowler, J. S. , Wang, G. J. , Baler, R. , Telang, F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56, 3–8. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Fowler, J. S. , Wang, G. J. , Swanson, J. M. , Telang, F. (2007). Dopamine in drug abuse and addiction: Results of imaging studies and treatment implications. Archives of Neurology, 64, 1575–1579. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Wang, G. J. , Fischman, M. W. , Foltin, R. W. , Fowler, J. S. , Abumrad, N. N. , ... Shea, C. E. (1997). Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature, 386, 827–830. First citation in articleCrossrefGoogle Scholar

  • Volkow, N. D. , Wang, G. J. , Fowler, J. S. , Logan, J. , Gatley, S. J. , Wong, C. , ... Pappas, N. R. (1999). Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. Journal of Pharmacology and Experimental Therapeutics, 291(1), 409–415. First citation in articleGoogle Scholar

  • WHO Information. (1996). Trends in substance use and associated health problems (Fact sheet No. N127). Geneva: WHO. First citation in articleGoogle Scholar

  • Wise, R. , Leone, P. , Rivest, R. & Leeb, K. (1995). Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse, 21, 140–148. First citation in articleCrossrefGoogle Scholar

  • Zald, D. H. , Boileau, I. , El-Dearedy, W. , Gunn, R. , McGlone, F. , Dichter, G. S. , Dagher, A. (2004). Dopamine transmission in the human striatum during monetary reward tasks. The Journal of Neuroscience, 24, 4105–4112. First citation in articleCrossrefGoogle Scholar

  • Zimmer-Höfler, D. , Uchtenhagen, A. (1989). Hintergründe und Motivation beim Beginn der Drogenkarriere. Zurich. First citation in articleGoogle Scholar