Skip to main content
Übersichtsartikel

Behandlung des Morbus Parkinson: Neuropsychologische Veränderungen nach Tiefer Hirnstimulation

Published Online:https://doi.org/10.1024/1016-264X/a000112

Die Tiefenhirnstimulation (THS) ist beim Morbus Parkinson eine der effektivsten Therapieoptionen. Präoperativ wird nach einer dementiellen Entwicklung und nach Störungen in den Exekutivfunktionen gesucht, da letztere nach der Operation eine milde Verschlechterung erfahren können. Während neuropsychologische Veränderungen nach der VIM Stimulation nicht beobachtet werden, können leichte Defizite in der exekutiven Kontrolle nach der STN und der GPi Stimulation auftreten. Diese kognitiven Veränderungen haben keinen Einfluss auf die deutliche Besserung der Lebensqualität der Patienten durch die Operation. Durch das An- und Abschalten des Stimulators kann die Stimulation als ein reversibles, intraindividuelles Läsionsmodel angesehen werden, mit dem grundlegende Funktionen des STN untersucht werden können. Diese Auswirkungen der Stimulation finden zumeist kein Korrelat im täglichen Leben der Patienten.


Deep Brain Stimulation for Parkinson’s Disease

Deep brain stimulation is one of the most effective therapies to treat Parkinson’s disease. The subthalamic nucleus (STN), the internal part of globus pallidum (GPi) and the nucleus ventrointermedius (VIM) of the thalamus are common stimulation sites. A comprehensive neuropsychological test-battery should be applied prior to surgery to exclude dementia and to specifically examine executive functioning, because executive functions can worsen after surgery. Whereas neuropsychological changes are not common after stimulation of the VIM and the GPi, STN stimulation may lead to mild worsening in executive functioning. These changes have been examined extensively for STN-DBS. A decline in verbal fluency (Cohens’ d – 0.5) and Stroop task performance (Cohens’ d -0.4) has been shown. However, these changes have no impact on the improvement of quality of life after surgery. Patients with an older age, suffering from axial motor symptoms and taking a higher levo-dopa equivalence dosage are at risk to decline in executive functions after surgery. If the electrode trajectories hit the caudate nucleus, patients showed a worsening in global cognition and working memory abilities. A worsening of verbal fluency and Stroop test performance are the consequence of the electrode placement itself, either due to a micro–lesional effect or an effect of electrode stimulation. As it can be switched off, DBS can may serve as a reversible, intra-individual lesion model of the STN. The modulation of the stimulation settings is a useful method to assess the impact of the STN on different cognitive domains such as spatial orientation, recognition of emotional stimuli and decision making to explore the role of the STN in the cognitive and the affective domain. Changes in these domains are only detectable using experimental designs and these changes have only minor consequences for patients’ daily routine.

Literatur

  • Alexander, G. E. & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in neurosciences. 13, 266 – 271. First citation in articleCrossrefGoogle Scholar

  • Aschenbrenner, S. , Tucha, O. & Lange, K. W. (2000). Regensburger Wortflüssigkeitstest (Vol. 1). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Benazzouz, A. & Hallett, M. (2000). Mechanism of action of deep brain stimulation. Neurology, 55, 13 – 16. First citation in articleGoogle Scholar

  • Bergman, H. , Wichmann, T. & DeLong, M. R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436 – 1438. First citation in articleGoogle Scholar

  • Biseul, I. , Sauleau, P. , Haegelen, C. , Trebon, P. , Drapier, D. , Raoul, S. et al. (2005). Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson’s disease. Neuropsychologia, 43, 1054 – 1059. First citation in articleGoogle Scholar

  • Braak, H. , Rub, U. , Jansen Steur, E. N. , Del Tredici, K. & de Vos, R. A. (2005). Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology, 64, 1404 – 1410. First citation in articleCrossrefGoogle Scholar

  • Castrioto, A. , Lozano, A. M. , Poon, Y. Y. , Lang, A. E. , Fallis, M. & Moro, E. (2011). Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Archives of neurology, 68, 1550 – 1556. First citation in articleGoogle Scholar

  • Cavanagh, J. F. , Wiecki, T. V. , Cohen, M. X. , Figueroa, C. M. , Samanta, J. , Sherman, S. J. et al. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature neuroscience, 14, 1462 – 1467. First citation in articleGoogle Scholar

  • Damier, P. , Hirsch, E. C. , Agid, Y. & Graybiel, A. M. (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain : a journal of neurology, 122, 1437 – 1448. First citation in articleCrossrefGoogle Scholar

  • Daniels, C. , Krack, P. , Volkmann, J. , Pinsker, M. O. , Krause, M. , Tronnier, V. et al. (2010). Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society, 25, 1583 – 1589. First citation in articleGoogle Scholar

  • Defer, G. L. , Widner, H. , Marie, R. M. , Remy, P. & Levivier, M. (1999). Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Movement disorders: official journal of the Movement Disorder Society, 14, 572 – 584. First citation in articleCrossrefGoogle Scholar

  • Frank, M. J. , Samanta, J. , Moustafa, A. A. & Sherman, S. J. (2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318, 1309 – 1312. First citation in articleCrossrefGoogle Scholar

  • Gatterer, G. (2008). Alters-Konzentrations-Test (Vol. 1). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Kempster, P. A. , O’Sullivan, S. S. , Holton, J. L. , Revesz, T. & Lees, A. J. (2010). Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain: a journal of neurology, 133, 1755 – 1762. First citation in articleCrossrefGoogle Scholar

  • Mattis, S. (1988). Dementia Rating Scale: Professional Manual (Vol. 2) Odessa, Florida: Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Mikos, A. , Bowers, D. , Noecker, A. M. , McIntyre, C. C. , Won, M. , Chaturvedi, A. et al. (2011). Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency. NeuroImage, 54, 238 – 246. First citation in articleCrossrefGoogle Scholar

  • Montgomery, E. B. , Jr. & Gale, J. T. (2008). Mechanisms of action of deep brain stimulation(DBS). Neuroscience and biobehavioral reviews, 32, 388 – 407. First citation in articleCrossrefGoogle Scholar

  • Okun, M. S. , Gallo, B. V. , Mandybur, G. , Jagid, J. , Foote, K. D. , Revilla, F. J. et al. (2012). Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet neurology, 11, 140 – 149. First citation in articleCrossrefGoogle Scholar

  • Oswald, W. D. & Fleischmann, U. M. (1995). Nürnberger-Alters-Inventar (Vol. 3). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Parent, A. & Hazrati, L. N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain research. Brain research reviews, 20, 128 – 154. First citation in articleCrossrefGoogle Scholar

  • Parsons, T. D. , Rogers, S. A. , Braaten, A. J. , Woods, S. P. & Troster, A. I. (2006). Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet neurology, 5, 578 – 588. First citation in articleCrossrefGoogle Scholar

  • Peron, J. , Biseul, I. , Leray, E. , Vicente, S. , Le Jeune, F. , Drapier, S. et al. (2010). Subthalamic nucleus stimulation affects fear and sadness recognition in Parkinson’s disease. Neuropsychology, 24, 1 – 8. First citation in articleCrossrefGoogle Scholar

  • Petermann, F. & Lepach, A. (2012). WMS-IV Deutsche Adaption der revidierten Fassung der Wechsler Memory Scale (Vol. 4). Frankfurt: Pearson. First citation in articleGoogle Scholar

  • Schuepbach, W. M. , Rau, J. , Knudsen, K. , Volkmann, J. , Krack, P. , Timmermann, L. et al. (2013). Neurostimulation for Parkinson’s disease with early motor complications. The New England journal of medicine, 368, 610 – 622. First citation in articleCrossrefGoogle Scholar

  • Smeding, H. M. , Speelman, J. D. , Koning-Haanstra, M. , Schuurman, P. R. , Nijssen, P. , van Laar, T. et al. (2006). Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology, 66, 1830 – 1836. First citation in articleCrossrefGoogle Scholar

  • Strauss, E. , Sherman, E. & Spreen, O. (2006). A Compendium of Neuropsychological Tests (Vol. 3). New York: Oxford University Press. First citation in articleGoogle Scholar

  • van den Wildenberg, W. P. , van Boxtel, G. J. , van der Molen, M. W. , Bosch, D. A. , Speelman, J. D. & Brunia, C. H. (2006). Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. Journal of cognitive neuroscience, 18, 626 – 636. First citation in articleCrossrefGoogle Scholar

  • Volkmann, J. , Daniels, C. & Witt, K. (2010). Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nature reviews. Neurology, 6, 487 – 498. First citation in articleGoogle Scholar

  • Werheid, K. & Hoppe, C. (2002). The adaptive digit ordering test DOT-A: clinical application, reliability and validity of a verbal working memory test. Archives of Clinical Neuropsychology, 17, 547 – 565. First citation in articleCrossrefGoogle Scholar

  • Witt, K. , Pulkowski, U. , Herzog, J. , Lorenz, D. , Hamel, W. , Deuschl, G. et al. (2004). Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Archives of neurology, 61, 697 – 700. First citation in articleCrossrefGoogle Scholar

  • Witt, K. , Kopper, F. , Deuschl, G. & Krack, P. (2006). Subthalamic nucleus influences spatial orientation in extra-personal space. Movement disorders : official journal of the Movement Disorder Society, 21, 354 – 361. First citation in articleCrossrefGoogle Scholar

  • Witt, K. , Daniels, C. , Reiff, J. , Krack, P. , Volkmann, J. , Pinsker, M. O. et al. (2008). Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet neurology, 7, 605 – 614. First citation in articleCrossrefGoogle Scholar

  • Witt, K. , Daniels, C. , Krack, P. , Volkmann, J. , Pinsker, M. O. , Kloss, M. et al. (2011). Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson’s disease. Journal of the neurological sciences, 310, 261 – 266. First citation in articleGoogle Scholar

  • Witt, K. , Daniels, C. & Volkmann, J. (2012). Factors associated with neuropsychiatric side effects after STN-DBS in Parkinson’s disease. Parkinsonism & related disorders, 18, 168 – 170. First citation in articleCrossrefGoogle Scholar

  • Witt, K. , Granert, O. , Daniels, C. , Volkmann, J. , Falk, D. , van Eimeren, T. et al. (2013). Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain : a journal of neurology, 136, 2109 – 2119. First citation in articleCrossrefGoogle Scholar