Skip to main content
Original Article

Dopaminsystem und Intertemporal Choice Aufgaben

Published Online:https://doi.org/10.1024/1016-264X/a000218

Abstract. The dopamine (DA) system has been implicated in the mediation of cost/benefit evaluations involved in the intertemporal choices between immediate and delayed rewards. This involvement was further investigated in two studies of normal participants that had to decide between a smaller immediate and a larger delayed reward in a series of 27 decisions.In study 1 the dopamine D2/D3 receptor agonist pramipexole or placebo were administered in a double-blind cross-over protocol prior to the decisions. In study 2 the same experiment was conducted in two groups of normal participants that were homozygous for either the 7repeat or the 4 repeat variant of the exon III polymorphism of the Dopamine D4 receptor gene. Dopaminergic involvement is highlighted by the results.


Dopaminsystem und Intertemporal Choice Aufgaben

Zusammenfassung. Das Dopamin (DA) System ist mit Kosten / Nutzen Abschätzungen zum Beispiel bei so genannten “Intertemporal Choice” Aufgaben in Verbindung gebracht worden. Hierbei handelt es sich um Aufgaben, bei denen zwischen einem (kleineren) sofort verfügbaren und einem später verfügbaren (größeren) Gewinn unterschieden werden muss. Es kommt zu einer Abwertung von später verfügbaren Gewinnen, wobei die Abwertungskurve einer hyperbolen Funktion folgt. Wir haben die Rolle des Dopamins in zwei weiteren Untersuchungen näher charakterisiert, die jeweils 27 Entscheidungen zwischen einem frühen und einem späteren Gewinn beinhalteten. Das Paradigma erlaubte die Schätzung der Steilheit der Abwertungskurve und teilte die Einzelentscheidungen darüber hinaus nach der Höhe des Gewinns in „niedrige“, „mittlere“ und „hohe“ Gewinne ein. In Studie 1 wurde die Abwertung unter Plazebo mit dem Dopaminagonist Pramipexol verglichen (doppel-blindes Cross-Over Design). In der Plazebobedingung wurde ein typischer Effekt der Belohnungsgröße mit weniger steiler Abwertung von großen Gewinnen gesehen. Dies war unter Pramipexol nicht der Fall, Probanden waren also weniger konservativ.

In Studie 2 untersuchten wir zwei Gruppen normaler Probanden die sich bezüglich der von ihnen getragenen Variante des Dopamin-D4-Rezeptors unterschieden (homozygot für die 7-Repeat oder 4-Repeat Variante des Exon III Polymorphismus). Träger der 7-Repeat Variante werteten Gewinne steiler ab als Träger der 4-Repeat-Variante. Erstere ist mit Impulsivität in Zusammenhang gebracht worden.

Literature

  • Amiez, C., Joseph, J. P. & Procyk, E. (2006) Reward encoding in the monkey anterior cingulate cortex. Cerebral Cortex, 16, 1040–1055. First citation in articleGoogle Scholar

  • Asghari, V., Sanyal, S., Buchwaldt, S., Paterson, A., Jovanovic, V. & Van Tol, H. H. (1995). Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. Journal of Neurochemistry, 65, 1147–1165. First citation in articleGoogle Scholar

  • Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L. & Hamer, D. h. (1996). Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking. Nature Genetics, 12, 81–84. First citation in articleGoogle Scholar

  • Benzion, U., Rapoport, A. & Yagil, J. (1989). Discount rates inferred from decisions: An experimental study. Management Science, 35, 270–284. First citation in articleGoogle Scholar

  • Boettiger, C. A., Mitchell, J. M., Tavares, V. C., Robertson, M., Joslyn, G., D’Esposito, M. & Fields, H. L. (2007). Immediate reward bias in humans: fronto-parietal networks and a role for the catechol-O-methyltransferase 158(Val/Val) genotype. Journal of Neuroscience, 27, 14383–14391. First citation in articleGoogle Scholar

  • Bonfield, J. K., Smith, K. & Staden, R. (1995). A new DNA sequence assembly program. Nucleic Acids Research, 23, 4992–4999. First citation in articleGoogle Scholar

  • Cardinal, R. N., Robbins, T. W. & Everitt, B. J. (2000). The effects of d-amphetamine, chlordiazepoxide, α-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology, 152, 362–375. First citation in articleGoogle Scholar

  • Comings, D. E., Rosenthal, R. J., Lesieur, H. R., Rugle, L. J., Muhleman, D., Chiu, C., … Gade, R. (1996). A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics, 6, 223–234. First citation in articleGoogle Scholar

  • Congdon, E., Lesch, K. P. & Canli, T. (2008). Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: implications for impulsivity. American Journal of Medical Genetics B Neuropsychiatric Genetics, 147B, 27–32. First citation in articleGoogle Scholar

  • Cools, R., Barker, R. A., Sahakian, B. J. & Robbins, T. W. (2003). L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia, 41, 1431–1441. First citation in articleGoogle Scholar

  • De, C., Gade, R., Wu, S., Chiu, C., Dietz, G., Muhleman, D., … MacMurray, P. (1997). Studies of the potential role of the dopamine D1 receptor gene in addictive behaviors. Molecular Psychiatry, 2, 44–56. First citation in articleGoogle Scholar

  • De, C., Gade-Andavolu, R., Gonzalez, N., Wu, S., Muhleman, D., Chen, C., … Rosenthal, R. J. (2001). The additive effect of neurotransmitter genes in pathological gambling. Clinical Genetics, 60, 107–116. First citation in articleGoogle Scholar

  • Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C. & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072–3077. First citation in articleGoogle Scholar

  • Denk, F., Walton, M. E., Jennings, K. A., Sharp, T., Rushworth, M. F. S. & Bannerman, D. M. (2005). Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology, 179, 587–596. First citation in articleGoogle Scholar

  • Durston, S., Fossella, J. A., Casey, B. J., Hulshoff Pol, H. E., Galvan, A., Schnack, H. G., … van Engeland, H. (2005) Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Molecular Psychiatry, 10, 678–685. First citation in articleGoogle Scholar

  • Everitt, B. J. & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489. First citation in articleGoogle Scholar

  • Faraone, S. V., Doyle, A. E., Mick, E. & Biederman, J. (2001), Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158, 1052–1057. First citation in articleGoogle Scholar

  • Floresco, S. B., Tse, M. T. & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology, 33, 1966–1979. First citation in articleGoogle Scholar

  • Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W. & Posner, M. I. (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3, 14. First citation in articleCrossrefGoogle Scholar

  • Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in Parkinsonism. Science, 318, 1309–1312. First citation in articleGoogle Scholar

  • Frederick, S., Loewenstein, G. & O’Donoghue, T. (2003). Time discounting and time preference: A critical review. In: Loewenstein, G., Read, D. & Baumeister, R. (eds.) Sage, New York, NY, pp 13–86. First citation in articleGoogle Scholar

  • Gallagher, D. A., O’Sullivan, S. S., Evans, A. H., Lees, A. J. & Schrag, A. (2007). Pathological gambling in Parkinson’s disease: Risk factors and differences from dopamine dysregulation. An analysis of published case series. Movement Disorders, 22, 1757–1763. First citation in articleGoogle Scholar

  • Green, L., Fristoe, N. & Myerson, J. (1994). Temporal discounting and preference reversals in choice between delayed outcomes. Psychonomic Bulletin and Review, 1, 383–389. First citation in articleGoogle Scholar

  • Green, L., Fry, A. F. & Myerson, J. (1994). Discounting of Delayed Rewards: A Life-Span Comparison. Psychological Science, 5, 33–36. First citation in articleGoogle Scholar

  • Kable, J. W. & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 1625–1633. First citation in articleGoogle Scholar

  • Kalenscher, T., Windmann, S., Diekamp, B., Rose, J., Gunturkun, O. & Colombo, M. (2005). Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Current Biology, 15, 594–602. First citation in articleGoogle Scholar

  • Kirby, K. N. (1997). Bidding on the future: Evidence against normative discounting of delayed rewards. Journal of Experimental Psychology-General, 126, 54–70. First citation in articleGoogle Scholar

  • Kirby, K. N. & Marakovic, N. N. (1995). Modeling Myopic Decisions: Evidence for Hyperbolic Delay-Discounting within Subjects and Amounts. Organizational Behavior and Human Decision Processes, 64, 22–30. First citation in articleGoogle Scholar

  • Kirby, K. N. & Marakovic, N. N. (1996). Delay-discounting probabilistic rewards: Rates decrease as amounts increase. Psychonomic Bulletin & Review, 3, 100–104. First citation in articleGoogle Scholar

  • Kirby, K. N., Petry, N. M. & Bickel, W. K. (1999). Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology-General, 128, 78–87. First citation in articleGoogle Scholar

  • Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience, 25, 4806–4812. First citation in articleGoogle Scholar

  • Krämer, U. M., Cunillera, T., Camara, E., Marco-Pallares, J., Cucurell, D., Nager, W., … Münte, T. F. (2007). The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. Journal of Neuroscience, 27, 14190–14198. First citation in articleGoogle Scholar

  • Laibson, D. i. (1997). Golden eggs and hyperbolic discounting. Quarterly Journal of Economics, 112, 443–477. First citation in articleGoogle Scholar

  • Li, D., Sham, P. C., Owen, M. J. & He, L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 15, 2276–2284. First citation in articleGoogle Scholar

  • Lichter, J. B., Barr, C. L., Kennedy, J. L., Van Tol, H. H., Kidd, K. K. & Livak, K. J. (1993). A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Human Molecular Genetics, 2, 767–773. First citation in articleGoogle Scholar

  • Maher, B. S., Marazita, M. L., Ferrell, R. E. & Vanyukov, M. M. (2002). Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatric Genetics, 12, 207–215. First citation in articleCrossrefGoogle Scholar

  • Mazur, J. E. (1984). Tests of an equivalence rule for fixed and variable reinforcer delays. Journal of Experimental Psychology Animal Behavior Processes, 10, 426–436. First citation in articleGoogle Scholar

  • McClure, S. M., Ericson, K. M., Laibson, D. i., Loewenstein, G. & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27, 5796–5804. First citation in articleGoogle Scholar

  • McClure, S. M., Laibson, D. i., Loewenstein, G. & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507. First citation in articleGoogle Scholar

  • Okuyama, Y., Ishiguro, H., Toru, M. & Arinami, T. (1999). A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochemistry and Biophysical Research Communications, 258, 292–295. First citation in articleGoogle Scholar

  • Paterson, A. D., Sunohara, G. A. & Kennedy, J. L. (1999). Dopamine D4 receptor gene: novelty or nonsense? Neuropsychopharmacology, 21, 3–16. First citation in articleGoogle Scholar

  • Perez De Castro, I., Ibanez, A., Torres, P., Saiz-Ruiz, J. & Fernandez-Piqueras, J. (1997). Genetic association study between pathological gambling and a functional DNA polymorphism at the D4 receptor gene. Pharmacogenetics, 7, 345–348. First citation in articleGoogle Scholar

  • Quickfall, J. & Suchowersky, O. (2007). Pathological gambling associated with dopamine agonist use in restless legs syndrome. Parkinsonism and Related Disorders, 13, 535–536. First citation in articleGoogle Scholar

  • Raineri, A. & Rachlin, H. (1993). The effect of temporal constraints on the value of money and other commodities. Journal of Behavioral Decision Making, 6, 77–94. First citation in articleGoogle Scholar

  • Riba, J., Kramer, U. M., Heldmann, M., Richter, S. & Munte, T. F. (2008). Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS ONE, 3, e2479. First citation in articleGoogle Scholar

  • Rosati, A. G., Stevens, J. R., Hare, B. & Hauser, M. D. (2007). The Evolutionary Origins of Human Patience: Temporal Preferences in Chimpanzees, Bonobos, and Human Adults. Current Biology, 17, 1663–1668. First citation in articleGoogle Scholar

  • Salamone, J. D., Wisniecki, A., Carlson, B. B. & Correa, M. (2001). Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience, 105, 863–870. First citation in articleGoogle Scholar

  • Schinka, J. A., Letsch, E. A. & Crawford, F. C. (2002). DRD4 and novelty seeking: Results of meta-analyses. American Journal of Medical Genetics, 114, 643–648. First citation in articleGoogle Scholar

  • Strobel, A., Debener, S., Anacker, K., Müller, J., Lesch, K. P. & Brocke, B. (2004). Dopamine D4 receptor exon III genotype influence on the auditory evoked novelty P3. Neuroreport, 15, 2411–2415. First citation in articleCrossrefGoogle Scholar

  • Thaler, R. (1981). Some empirical evidence on dynamic inconsistency. Economics Letters, 8, 201–207. First citation in articleGoogle Scholar

  • van Gaalen, M. M., van Koten, R., Schoffelmeer, A. N. M. & Vanderschuren, L. J. M. J. (2006). Critical Involvement of Dopaminergic Neurotransmission in Impulsive Decision Making. Biological Psychiatry, 60, 66–73. First citation in articleGoogle Scholar

  • Van Tol, H. H.,. Wu, C. M., Guan, H. C., Ohara, K., Bunzow, J. R., Civelli, O., … Jovanovic, V. (1992). Multiple dopamine D4 receptor variants in the human population. Nature, 358, 149–152. First citation in articleGoogle Scholar

  • Wong, A. H. & Van Tol, H. H. (2003). The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Progress in Neuropsychopharmacology and Biological Psychiatry, 27, 1091–1099.– First citation in articleGoogle Scholar

  • Ye, Z., Hammer, A., Camara, E. & Münte, T. F. (2011). Pramipexole modulates the neural network of reward anticipation. Human Brain Mapping, 32, 800–811. First citation in articleGoogle Scholar