Skip to main content
Published Online:https://doi.org/10.1024/1421-0185/a000112

Sternberg’s paradigm is currently viewed as a typical short-term memory task and is widely used to tap mnemonic capacities in neuroscience studies. However, Sternberg’s original procedure includes an experimental constraint – recalling the sequence of digits in order – which was not reused in the following studies. In previous research (Corbin & Marquer, 2008, 2009), we showed that the recall constraint has an impact on the quantitative results as well as on the strategies implemented. These findings led us to wonder whether the presence or absence of this simple experimental constraint could also affect the processes implemented in Sternberg’s task. In order to answer this question, we analyzed the relationships between the performance levels of 50 participants on Sternberg’s task on various well-known span tasks and on a classical visual search task. The results showed that, in the recall condition, Sternberg’s paradigm appears to be a verbal working memory task, whereas in the no-recall condition, the task appears to be a recognition task that involves visuospatial memory capacities. In this latter condition, the processes implemented may be more similar to those implemented in visual search tasks.

References

  • Ahn, K. H., Youn, T., Cho, S. S., Ha, T. H., Ha, K. S., Kim, M. S., Kwon, J. S. (2003). N-methyl-D-aspartate receptor in working memory impairments in schizophrenia: Event-related potential study of late stage of working memory process. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 993–999. doi 10.1016/S0278-5846(03)00159-3 First citation in articleCrossrefGoogle Scholar

  • Allain, H., Bentue-Ferrer, D., Tarral, A., Gandon, J. M. (2003). Effects on postural oscillation and memory functions of a single dose of zolpidem 5 mg, zopiclone 3.75 mg and lormetazepam 1 mg in elderly healthy subjects: A randomized, cross-over, double-blind study versus placebo. European Journal of Clinical Pharmacology, 59, 179–188. doi 10.1007/s00228-003-0591-5 First citation in articleCrossrefGoogle Scholar

  • Altamura, M., Elvevåg, B., Blasi, G., Bertolino, A., Callicott, J. H., Weinberger, D. R., ..., & Goldberg, T. E. (2007). Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Research: Neuroimaging, 154, 103–114. doi 10.1016/j.pscychresns.2006.08.002 First citation in articleCrossrefGoogle Scholar

  • Anders, T. R., Fozard, J. L., Lillyquist, T. D. (1972). Effects of age upon retrieval from short-term memory. Developmental Psychology, 6, 214–217. First citation in articleCrossrefGoogle Scholar

  • Anderson, E. J., Mannan, S. K., Rees, G., Sumner, P., Kennard, C. (2010). Overlapping functional anatomy for working memory and visual search. Experimental Brain Research, 200, 91–107. doi 10.1007/s00221-009-2000-5 First citation in articleCrossrefGoogle Scholar

  • Archibald, C. J., Xingchang, W., Scott, J. N., Wallace, C. J., Zhang, Y., Metz, L. M., Mitchell, J. R. (2004). Posterior fossa lesion volume and slowed information processing in multiple sclerosis. Brain, 127, 1526–1534. doi 10.1093/brain/awh167 First citation in articleCrossrefGoogle Scholar

  • Atkinson, R. C., Holmgren, J. E., Juola, J. F. (1969). Processing time as influenced by the number of elements in a visual display. Perception and Psychophysics, 6(6-A), 321–326. First citation in articleCrossrefGoogle Scholar

  • Awh, E., Jonides, J., Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception & Performance, 24, 780–790. doi: 10.1037 /0096-1523.24.3.780 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D. (1990). Human memory: Theory and practice. Hove, UK: Erlbaum. First citation in articleGoogle Scholar

  • Baddeley, A. D., Ecob, J. R. (1973). Reaction time and short-term memory: Implications of repetition effects for the high-speed exhaustive scan hypothesis. The Quarterly Journal of Experimental Psychology, 25, 229–240. First citation in articleGoogle Scholar

  • Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300. doi 10.2307/2346101 First citation in articleCrossrefGoogle Scholar

  • Burrows, D., Okada, R. (1971). Serial position effects in high-speed memory search. Perception and Psychophysics, 10, 305–308. First citation in articleCrossrefGoogle Scholar

  • Burrows, D., Okada, R. (1973). Parallel scanning of semantic and formal information. Journal of Experimental Psychology, 97, 254–257. First citation in articleCrossrefGoogle Scholar

  • Chase, W. G., Calfee, R. C. (1969). Modality and similarity effects in short-term recognition memory. Journal of Experimental Psychology, 81, 510–514. First citation in articleCrossrefGoogle Scholar

  • Chiang, A., Atkinson, R. C. (1976). Individual differences and interrelationships among a select set of cognitive skills. Memory and Cognition, 4, 661–672. First citation in articleCrossrefGoogle Scholar

  • Clifton, C. J., Birenbaum, S. (1970). Effects of serial position and delay of probe in a memory scan task. Journal of Experimental Psychology, 86, 69–76. First citation in articleCrossrefGoogle Scholar

  • Conrad, R. (1964). Acoustic confusions in immediate memory. British Journal of Psychology, 55, 75–84. First citation in articleCrossrefGoogle Scholar

  • Corballis, M. C., Kirby, J., Miller, A. (1972). Access to elements of a memorized list. Journal of Experimental Psychology, 94, 185–190. First citation in articleCrossrefGoogle Scholar

  • Corbin, L., Marquer, J. (2008). Effect of the recall constraint in Sternberg’s memory scanning task. European Journal of Cognitive Psychology, 20, 913–935. First citation in articleCrossrefGoogle Scholar

  • Corbin, L., Marquer, J. (2009). Individual differences in Sternberg’s memory scanning task. Acta Psychologica, 131, 153–162. doi 10.1016/j.actpsy.2009.04.001 First citation in articleCrossrefGoogle Scholar

  • Cowan, N., Baddeley, A. D., Elliott, E. M., Norris, J. (2003). List composition and the word length effect in immediate recall: A comparison of localist and globalist assumptions. Psychonomic Bulletin & Review, 10, 74–79. doi 10.3758/BF03196469 First citation in articleCrossrefGoogle Scholar

  • Cowan, N., Chen, Z., Rouder, J. N. (2004). Constant capacity in an immediate serial-recall task: A logical sequel to Miller (1956). Psychological Science, 15, 634–640. doi 10.1111/j.0956-7976.2004.00732.x First citation in articleCrossrefGoogle Scholar

  • D’Esposito, M., Postle, B. R., Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research, 133, 3–11. doi 10.1007/s002210000395 First citation in articleCrossrefGoogle Scholar

  • Daneman, M., Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. First citation in articleCrossrefGoogle Scholar

  • Desmette, D., Hupet, M., Schelstraete, M., Van der Linden, M. (1995). Adaptation en langue française du “reading spantest” de Daneman et Carpenter (1980) [French version of Daneman and Carpenter’s (1980) Reading Span Test]. L’année Psychologique, 95, 459–482. First citation in articleCrossrefGoogle Scholar

  • Ebbinghaus, H., Ruger, H. A., Bussenius, C. E. (1913). Memory: A contribution to experimental psychology. New York, NY: Teachers College Press. First citation in articleCrossrefGoogle Scholar

  • Edwards, A. L. (1976). An introduction to linear regression and correlation. San Francisco, CA: Freeman. First citation in articleGoogle Scholar

  • Farrell, S., Lewandowsky, S. (2003). Dissimilar items benefit from phonological similarity in serial recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 838–849. First citation in articleCrossrefGoogle Scholar

  • Harris, G. J., Fleer, R. E. (1974). High speed memory scanning in mental retardates: Evidence for a central processing deficit. Journal of Experimental Child Psychology, 17, 452–459. First citation in articleCrossrefGoogle Scholar

  • Hunt, E. (1978). Mechanics of verbal ability. Psychological Review, 85, 109–130. First citation in articleCrossrefGoogle Scholar

  • Jensen, O., Gelfand, J., Kounios, J., Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882. doi 10.1093/cercor/12.8.877 First citation in articleCrossrefGoogle Scholar

  • Johnson, M. R., Morris, N. A., Astur, R. S., Calhoun, V. D., Mathalon, D. H., Kiehl, K. A., Pearlson, G. D. (2006). A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry, 60, 11–21. doi 10.1016/j.biopsych.2005.11.012 First citation in articleCrossrefGoogle Scholar

  • Jonides, J., Gleitman, H. (1972). A conceptual category effect in visual search: O as letter or as digit. Perception and Psychophysics, 12, 457–460. First citation in articleCrossrefGoogle Scholar

  • Karrasch, M., Laine, M., Rinne, J. O., Rapinoja, P., Sinerva, E., Krause, C. M. (2006). Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer’s disease. International Journal of Psychophysiology, 59, 168–178. First citation in articleCrossrefGoogle Scholar

  • Klatzky, R. L., Smith, E. E. (1972). Stimulus expectancy and retrieval from short-term memory. Journal of Experimental Psychology, 94, 101–107. First citation in articleCrossrefGoogle Scholar

  • Klein, K. A., Addis, K. M., Kahana, M. J. (2005). A comparative analysis of serial and free recall. Memory & Cognition, 33, 833–839. doi 10.3758/BF03193078 First citation in articleCrossrefGoogle Scholar

  • Kristofferson, M. W. (1972). Effects of practice on character-classification performance. Canadian Journal of Psychology, 26, 540–560. First citation in articleCrossrefGoogle Scholar

  • Lewandowsky, S., Murdock, B. B. (1989). Memory for serial order. Psychological Review, 96, 25–57. First citation in articleCrossrefGoogle Scholar

  • Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27, 272–277. First citation in articleCrossrefGoogle Scholar

  • Monsell, S. (1978). Recency, immediate recognition memory, and reaction time. Cognitive Psychology, 10, 465–501. First citation in articleCrossrefGoogle Scholar

  • Moulton, P. L., Boyko, L. N., Fitzpatrick, J. L., Petros, T. V. (2001). The effect of Ginkgo biloba on memory in healthy male volunteers. Physiology and Behavior, 73, 659–665. doi 10.1016/S0031-9384(01)00510-8 First citation in articleCrossrefGoogle Scholar

  • Nairne, J. S., Kelley, M. R. (2004). Separating item and order information through process dissociation. Journal of Memory and Language, 50, 113–133. doi 10.1016/j.jml.2003.09.005 First citation in articleCrossrefGoogle Scholar

  • Oh, S. H., Kim, M. S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin and Review, 11, 275–281. doi 10.3758/BF03196570 First citation in articleCrossrefGoogle Scholar

  • Pelosi, L., Slade, T., Blumhardt, L. D., Sharma, V. K. (2000). Working memory dysfunction in major depression: An event-related potential study. Clinical Neurophysiology, 111, 1531–1543. doi 10.1016/S1388-2457(00)00354-0 First citation in articleCrossrefGoogle Scholar

  • Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12, 287–292. doi 10.1111/1467-9280.00353 First citation in articleCrossrefGoogle Scholar

  • Rypma, B., Berger, J. S., Genova, H. M., Rebbechi, D., D’Esposito, M. (2005). Dissociating age-related changes in cognitive strategy and neural efficiency using event-related fMRI. Cortex, 41, 582–594. doi 10.1016/S0010-9452(08)70198-9 First citation in articleCrossrefGoogle Scholar

  • Schlösser, R. G. M., Koch, K., Wagner, G., Nenadic, I., Roebel, M., Schachtzabel, C., ..., & Sauer, H. (2008). Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: An fMRI study. Neuropsychologia, 46, 336–347. doi 10.1016/j.neuropsychologia.2007.07.006 First citation in articleCrossrefGoogle Scholar

  • Schneider, W., Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66. First citation in articleCrossrefGoogle Scholar

  • Schweickert, R., Townsend, J. T. (1989). A trichotomy: Interactions of factors prolonging sequential and concurrent mental processes in stochastic discrete mental (PERT) networks. Journal of Mathematical Psychology, 33, 328–347. First citation in articleCrossrefGoogle Scholar

  • Shiffrin, R. M., Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190. First citation in articleCrossrefGoogle Scholar

  • Simpson, P. J. (1972). High-speed memory scanning: Stability and generality. Journal of Experimental Psychology, 96, 239–246. First citation in articleCrossrefGoogle Scholar

  • Singhal, A., Fowler, B. (2005). The effects of memory scanning on the late Nd and P300: An interference study. Psychophysiology, 42, 142–150. doi 10.1111/j.1469-8986.2005.00275.x First citation in articleCrossrefGoogle Scholar

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654. First citation in articleCrossrefGoogle Scholar

  • Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57, 421–457. First citation in articleGoogle Scholar

  • Sternberg, S. (1975). Memory scanning: New findings and current controversies. The Quarterly Journal of Experimental Psychology, 27, 1–32. First citation in articleCrossrefGoogle Scholar

  • Swanson, J. M., Briggs, G. E. (1969). Information processing as a function of speed versus accuracy. Journal of Experimental Psychology, 81, 223–229. First citation in articleCrossrefGoogle Scholar

  • Theios, J., Smith, P. G., Haviland, S. E., Traupmann, J., Moy, M. C. (1973). Memory scanning as a serial self-terminating process. Journal of Experimental Psychology, 97, 323–336. First citation in articleCrossrefGoogle Scholar

  • Townsend, J. T. (1971). A note on the identifiability of parallel and serial processes. Perception and Psychophysics, 10, 161–163. First citation in articleCrossrefGoogle Scholar

  • Townsend, J. T., Fific, M. (2004). Parallel versus serial processing and individual differences in high-speed search in human memory. Perception and Psychophysics, 66, 953–962. doi 10.3758/BF03194987 First citation in articleCrossrefGoogle Scholar

  • Townsend, J. T., Roos, R. N. (1973). Search reaction time for single targets in multiletter stimuli with brief visual display. Memory and Cognition, 1, 319–332. First citation in articleCrossrefGoogle Scholar

  • Townsend, J. T., Schweickert, R. (1989). Toward the trichotomy method of reaction times: Laying the foundation of stochastic mental networks. Journal of Mathematical Psychology, 33, 309–327. First citation in articleCrossrefGoogle Scholar

  • Treisman, A. M., Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. First citation in articleCrossrefGoogle Scholar

  • Treisman, A., Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95, 15–48. First citation in articleCrossrefGoogle Scholar

  • Van Zandt, T., Townsend, J. T. (1993). Self-terminating versus exhaustive processes in rapid visual and memory search: An evaluative review. Perception and Psychophysics, 53, 563–580. doi 10.3758/BF03205204 First citation in articleCrossrefGoogle Scholar

  • Verster, J. C., Volkerts, E. R., Verbaten, M. N. (2002). Effects of alprazolam on driving ability, memory functioning and psychomotor performance: A randomized, placebo-controlled study. Neuropsychopharmacology, 27, 260–269. doi 10.1016/S0893-133X(02)00310-X First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (1997/2000). Echelle d’intelligence pour adultes (WAIS) [Wechsler Adult Intelligence Scale]. Paris, France: CPA (adaptation de Manual for the WAIS-Third Edition, 1997). First citation in articleGoogle Scholar

  • Wenger, M. J., Townsend, J. T. (2006). On the costs and benefits of faces and words: Process characteristics of feature search in highly meaningful stimuli. Journal of Experimental Psychology: Human Perception and Performance, 33, 755–779. doi 10.1037/0096-1523.32.3.755 First citation in articleCrossrefGoogle Scholar

  • Wingfield, A. (1973). Effects of serial position and set size in auditory recognition memory. Memory and Cognition, 1, 53–55. doi 10.3758/BF03198067 First citation in articleCrossrefGoogle Scholar

  • Wingfield, A., Branca, A. A. (1970). Strategy in high-speed memory search. Journal of Experimental Psychology, 83, 63–67. First citation in articleCrossrefGoogle Scholar

  • Wolach, I., Pratt, H. (2001). The mode of short-term memory encoding as indicated by event-related potentials in a memory scanning task with distractions. Clinical Neurophysiology, 112, 186–197. doi 10.1016/S1388-2457(00)00501-0 First citation in articleCrossrefGoogle Scholar

  • Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 13–74). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Woodman, G. F., Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11, 269–274. doi 10.3758/BF03196569 First citation in articleCrossrefGoogle Scholar