Skip to main content
Freier Beitrag/Free Article

Stehen kognitive Funktionen im Zusammenhang mit Angst, Depression und Posttraumatischer Belastungsstörung bei Brustkrebspatientinnen nach onkologischer Behandlung?

Published Online:https://doi.org/10.1024/1661-4747.57.1.33

Die in mehreren Studien gefundenen kognitiven Störungen bei Tumorpatienten nach Chemotherapie werden zumeist mit der Zytostatikaneurotoxizität assoziiert. In der vorliegenden Arbeit wird der Zusammenhang von Angst, Depression und Posttraumatischer Belastungsstörung mit der kognitiven Leistungsfähigkeit bei Frauen mit Mammakarzinom untersucht. Insgesamt wurden 76 Brustkrebspatientinnen fünf Jahre nach Abschluss der onkologischen Behandlung mit neuropsychologischen Testverfahren sowie mit der Hospital Anxiety and Depression Scale – Deutsche Version (HADS-D) und der Posttraumatic Stress Disorder Checklist – Civilian Version (PCL-C) untersucht: 23 nach Standard- und 24 nach Hochdosistherapie sowie 29 nach Brustoperation und Strahlentherapie als Vergleichsgruppe. Signifikante Zusammenhänge sind vor allem zwischen kognitiven Funktionen und Intrusionssymptomen einer Posttraumatischen Belastungsstörung (PTBS) festzustellen. Bei Patientinnen nach Standardtherapie weisen Intrusionen der PTBS einen moderaten Zusammenhang mit der globalen kognitiven Beeinträchtigung auf. Die Ergebnisse der Studie deuten auf multidimensionale Einfluss- und moderierende Faktoren bei der Entwicklung kognitiver Defizite bei Brustkrebspatientinnen nach onkologischer Therapie hin.


Is Cognitive Performance Associated with Anxiety, Depression, and Posttraumatic Stress Disorder in Breast Cancer Survivors After Oncologic Therapy?

Neuropsychological impairment in cancer patients after chemotherapy is frequently associated with cytostatic neurotoxicity. The present study investigates the association between anxiety, depression and posttraumatic stress disorder with cognitive performance in breast cancer patients. 76 breast carcinoma survivors five years following oncologic therapy underwent neuropsychological assessment and filled out the Hospital Anxiety and Depression Scale – German Version (HADS-D) and the Posttraumatic Stress Disorder Checklist – Civilian Version (PCL-C): 23 following standard chemotherapy, 24 following high-dose chemotherapy and 29 following surgery and radiation therapy as comparison group. Significant correlations were mostly observed between cognitive functions and a symptom of posttraumatic stress disorder-intrusion. In the standard-group we found a moderate association between posttraumatic intrusion and global cognitive impairment. The results of this study indicate that the development of cognitive dysfunctions in breast cancer patients after chemotherapy might be a multidimensional process comprising several mediating or moderating factors.

Literatur

  • Ahles, T.A. , Saykin, A.J. , Furstenberg, C.T. , Cole, B. , Mott, L.A. , Skalla, K. et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. Journal of Clinical Oncology, 20, 485–493. First citation in articleCrossrefGoogle Scholar

  • Andrykowski, M.A. , Bishop, M.M. , Hahn, E.A. , Cella, D.F. , Beaumont, J.L. , Brady, M.J. et al. (2005). Long-term health-related quality of life, growth, and spiritual well-being after hematopoietic stemm-cell transplantation. Journal of Clinical Oncology, 23, 599–608. First citation in articleCrossrefGoogle Scholar

  • Aschenbrenner, S. , Tucha, O. , Lange, K.W. (2000). Regensburger Wortflüssigkeits-Test (RWT). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Becker, E.S. , Rinck, M. (2000). Aufmerksamkeit und Gedächtnis bei Angst und Depression. Psychologische Rundschau, 51, 67–74. First citation in articleLinkGoogle Scholar

  • Bender, C.M. , Sereika, S.M. , Berga, S.L. , Vogel, V.G. , Brufsky, A.M. , Paraska, K.K. et al. (2006). Cognitive impairment associated with adjuvant therapy in breast cancer. Psycho-Oncology, 15, 422–430. First citation in articleCrossrefGoogle Scholar

  • Bottomley, A. (1998). Anxiety and the adult cancer patient. European Journal of Cancer Care, 7, 217–224. First citation in articleCrossrefGoogle Scholar

  • Brickenkamp, R. (2002). Test d2 Aufmerksamkeits-Belastungs-Test (9. Aufl.). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Freeman, J.R. , Broshek, D.K. (2002). Assessing cognitive dysfunction in breast cancer: What are the tools? Clinical Breast Cancer, 3, 91–99. First citation in articleCrossrefGoogle Scholar

  • Gauggel, S. , Rathgeber, K. (2002). Neuropsychologie affektiver Störungen: Eine selektive Übersicht. Zeitschrift für Neuropsychologie, 13, 301–312. First citation in articleLinkGoogle Scholar

  • Härting, C. , Markowitsch, H.J. , Neufeld, H. , Calabrese, P. , Deisinger, K. , Kessler, J. (Hrsg.). (2000). Wechsler Gedächtnistest – Revidierte Fassung (WSM-R). Bern: Huber. First citation in articleGoogle Scholar

  • Helmstaedter, C. , Lendt, M. , Lux, S. (2001). Verbaler Lern- und Merkfähigkeitstest (VLMT). Göttingen: Beltz. First citation in articleGoogle Scholar

  • Hermann, C. , Buss, U. , Snaith, R.P. (1995). Hospital Anxiety and Depression Scale – Deutsche Version (HADS-D). Bern: Huber. First citation in articleGoogle Scholar

  • Horn, W. (1998). L-P-S Leistungsprüfsystem (2. Aufl.). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Jansen, C.E. , Miaskowski, C. , Dodd, M. , Dowling, G. , Kramer, J. (2005). A metaanalysis of studies of the effect of cancer chemotherapy on various domains of cognitive function. Cancer, 104, 2222–2233. First citation in articleCrossrefGoogle Scholar

  • Kangas, M. , Henry, J.L. , Bryant, R.A. (2002). Posttraumatic stress disorder following cancer: A conceptual and empirical review. Clinical Psychology Review, 22, 499–524. First citation in articleCrossrefGoogle Scholar

  • Kivling-Boden, G. , Sundbom, E. (2003). Cognitive abilities related to post-traumatic symptoms among refugees from the former Yugoslavia in psychiatric treatment. Nordic Journal of Psychiatry, 57, 191–198. First citation in articleCrossrefGoogle Scholar

  • Koso, M. , Hansen, S. (2006). Executive function and memory in posttraumatic stress disorder: A study of Bosnian war veterans. European Psychiatry, 21, 167–173. First citation in articleCrossrefGoogle Scholar

  • Massie, M.J. (2004). Prevalence of depression in patients with cancer. Journal of the National Cancer Institute Monographs, 32, 57–71. First citation in articleCrossrefGoogle Scholar

  • Meyers, C.A. , Weitzner, M. , Byrne, K. , Valentine, A. , Champlin, R.E. , Przepiorka, D. (1994). Evaluation of the neurobehavioural functioning of patients before, during and after bone marrow transplantation. Journal of Clinical Oncology, 12, 820–826. First citation in articleGoogle Scholar

  • Osterrieth, P.A. (1944). Le test de copie d’une figure complex: Contribution a l’étude de la perception et de la mémoire. Archives de Psychologie, 30, 286–356. First citation in articleGoogle Scholar

  • Reitan, R.M. (1986). Trail Making Test. Tucson: Reitan Neuropsychology Laboratory. First citation in articleGoogle Scholar

  • Schagen, S.B. , van Dam, F.S.A.M. , Muller, M.J. , Boogerd, W. , Lindeboom, J. , Bruning, P.F. (1999). Cognitive deficits after postoperative adjuvant chemotherapy for breast cancer. Cancer, 85, 640–650. First citation in articleCrossrefGoogle Scholar

  • Schagen, S.B. , Muller, M.J. , Boogerd, W. , Rosenbrand, R.M. , van Rhijn, D. et al. (2002). Late effects of adjuvant chemotherapy on cognitive function: A follow-up study in breast cancer patients. Annals of Oncology, 13, 1387–1397. First citation in articleCrossrefGoogle Scholar

  • Scherwath, A. , Mehnert, A. , Schleimer, B. , Schirmer, L. , Fehlauer, F. , Kreienberg, R. et al. (2006). Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: Evaluation of long-term treatment effects. Annals of Oncology, 17, 415–423. First citation in articleCrossrefGoogle Scholar

  • Schneiderman, B. (2004). Hippocampal volumes smaller in chemotherapy patients. The Lancet Oncology, 5, 202. First citation in articleCrossrefGoogle Scholar

  • Spreen, O. , Strauss, E. (1998). A compendium of neuropsychological tests (2. ed.). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Stemmer, S.M. , Stears, J.C. , Burton, B.S. , Jones, R.B. , Simon, J.H. (1994). White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. American Journal of Neuroradiology, 15, 1267–1273. First citation in articleGoogle Scholar

  • Teegen, F. (1997). Deutsche Übersetzung der Posttraumatic Stress Disorder Checklist (PCL-C) des National Center for PTSD. Hamburg: Universität, Psychologisches Institut. First citation in articleGoogle Scholar

  • Tewes, U. (Hrsg.). (1994). Hamburg-Wechsler-Intelligenztest für Erwachsene – Revision 1991 (HAWIE-R) (2. Aufl.). Bern: Huber. First citation in articleGoogle Scholar

  • van Dam, F.S.A.M. , Schagen, S.B. , Muller, M.J. , Boogerd, W. , v. d. Wall, E. , Droogleever Fortuyn, M.E. et al. (1998). Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: High-dose versus standard-dose chemotherapy. Journal of the National Cancer Institute, 90, 210–218. First citation in articleCrossrefGoogle Scholar

  • van Zomeren, A.H. , Brouwer, W.H. , Deelman, B.G. (1984). Attentional deficits: The riddles of selectivity, speed and alertness. In D.N. Brooks (Ed.), Closed head injury, psychological, social and family consequences (pp. 74–107). Oxford: University Press. First citation in articleGoogle Scholar

  • van’t Spijker, A. , Trijsburg, R.W. , Duivenvoorden, H.J. (1997). Psychological sequelae of cancer diagnosis: A meta-analytical review of 58 studies after 1980. Psychosomatic Medicine, 59, 280–293. First citation in articleCrossrefGoogle Scholar

  • Villarreal, G. , Hamilton, D.A. , Petropoulos, H. , Driscoll, I. , Rowland, L.M. , Griego, J.A. et al. (2002). Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biological Psychiatry, 52, 119–125. First citation in articleCrossrefGoogle Scholar

  • Waldstein, S.R. , Ryan, C.M. , Jennings, J.R. , Muldoon, M.F. , Manuck, S.B. (1997). Self-reported levels of anxiety do not predict neuropsychological performance in healthy men. Archives of Clinical Neuropsychology, 12, 567–574. First citation in articleCrossrefGoogle Scholar

  • Weathers, F.W. , Huska, J.A. , Keane, T.M. (1991). PCL-C for DSM-IV. Boston: National Center for PTSD – Behavioral Science Division. First citation in articleGoogle Scholar

  • Wefel, J.S. , Lenzi, R. , Theriault, R.L. , Davis, R.N. , Meyers, C.A. (2004a). The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma. Cancer, 100, 2292–2299. First citation in articleCrossrefGoogle Scholar

  • Wefel, J.S. , Lenzi, R. , Theriault, R. , Buzdar, A.U. , Cruickshank, S. , Meyers, C.A. (2004b). ‹Chemobrain› in breast carcinoma? A prologue. Cancer, 101, 466–475. First citation in articleCrossrefGoogle Scholar

  • Wieneke, M.H. , Dienst, E.R. (1995). Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psycho-Oncology, 4, 61–66. First citation in articleCrossrefGoogle Scholar

  • Zander, A.R. , Kroger, N. , Schmoor, C. , Krüger, W. , Möbus, V. , Frickhofen, N. et al. (2004). High-dose chemotherapy with autologous hematopoietic stem-cell support compared with standard-dose chemotherapy in breast cancer patients with 10 or more positive lymph nodes: First results of a randomized trial. Journal of Clinical Oncology, 22, 2273–83. First citation in articleCrossrefGoogle Scholar

  • Zimmermann, P. , Fimm, B. (2001). Testbatterie zur Aufmerksamkeitsprüfung (TAP) (Version 1.7). Herzogenrath: Psychologische Testsysteme. First citation in articleGoogle Scholar