Skip to main content
Mini-Review

Ketogene Diät: evidenzbasierte therapeutische Anwendung bei endokrinologischen Erkrankungen

Published Online:https://doi.org/10.1024/1661-8157/a003246

Zusammenfassung. Zusammenfassung: Die ketogene Diät (KD) ist eine sehr fettreiche und stark kohlenhydratreduzierte Ernährungsform, die bisher vor allem bei Kindern mit therapierefraktärer Epilepsie eingesetzt wird. Die Anwendung der KD bei anderen Krankheitsbildern wird zunehmend diskutiert. Diese Übersicht zeigt, dass erste Hinweise für einen klinischen Nutzen der KD beim Diabetes mellitus Typ 2 (T2DM) und beim Polyzystischen Ovarialsyndrom (PCOS) bestehen. In vielen analysierten Studien führte die KD zu einem signifikanten Gewichtsverlust und hatte eine günstige Wirkung auf das Lipoproteinprofil und die Insulinresistenz. Der HbA1c-Wert nahm durch die KD bei der Hälfte der kontrollierten T2DM-Studien signifikant stärker ab (HbA1c-Differenz: –0,5 bis –1,5 %) als durch Vergleichsdiäten (HbA1c-Differenz: +0,2 bis –0,5 %). Insgesamt sind die Studienresultate jedoch für eine allgemeine Empfehlung der KD bei diesem Patientenkollektiv zu heterogen.


Ketogenic Diet and its Evidence-Based Therapeutic Implementation in Endocrine Diseases

Abstract. Abstract: The ketogenic diet (KD) is a high-fat and very low-carb diet, which has been used primarily for treatment of therapy-resistant epilepsy in children. Implementation of the KD in other target populations is increasingly being discussed. This literature review provides first indications for a clinical benefit of the KD in diabetes mellitus type 2 (T2DM) and polycystic ovarian syndrome (PCOS). In many analysed studies, KD led to significant weight loss and had beneficial effects on lipoprotein profile and insulin resistance. In half of the comparative studies with T2DM, the KD lead to signifiantly greater reductions in HbA1c-levels (HbA1c difference: –0.5 to –1.5 %) compared to reference diets (HbA1c difference: +0.2 to –0.5 %). Nevertheless, study results are too heterogenic for a general recommendation of the KD in this patient population.


Résumé. Résumé: Le régime cétogène (RC) est un régime très riche en graisses et pauvre en hydrates de carbone. Il a initialement été développé pour le traitement des enfants souffrant d’épilepsie réfractaire aux médicaments. L’élargissement de son utilisation à d’autres domaines thérapeutiques est actuellement très discuté. Cette analyse bibliographique systématique démontre que l’utilisation du RC pour le traitement du diabète sucré de type 2 (T2DM) et du syndrome des ovaires polykistiques (SOPK) semble être bénéfique du point de vue clinique. Dans la majorité des études analysées, le RC mène à une perte de poids significative et a une influence positive sur le profil lipidique et la résistance à l’insuline. La moitié des études concernant le T2DM a démontré une baisse significative des valeurs d’hémoglobine glyquée sous RC (différence en HbA1c: –0,5 à –1,5 %), comparé à d’autres régimes (différence en HbA1c: +0,2 à –0,5 %). Les résultats des études sont cependant trop hétérogènes pour permettre de recommander le RC de manière générale aux patients souffrants de T2DM ou de SOPK.

Bibliografie

  • Sumithran P & Proietto J: Ketogenic diets for weight loss: A review of their principles, safety and efficacy. Obes Res Clin Pract 2008; 2: I–II. First citation in articleGoogle Scholar

  • Roehl K & Sewak SL: Practice Paper of the Academy of Nutrition and Dietetics: Classic and Modified Ketogenic Diets for Treatment of Epilepsy. J Acad Nutr Diet 2017; 117: 1279–1292. First citation in articleGoogle Scholar

  • Zürcher T, Nuoffer JM & Gautschi M: Praxis der ketogenen Diäten. SZE 2015; 2: 23–27. First citation in articleGoogle Scholar

  • AWMF: Ketnogene Diäten. AWMF online-Leitlinien der Gesellschaft für Neuropädiatrie. 2014. http://www.awmf.org/leitlinien/detail/ll/022–021.html; letzter Zugriff: 14.03.2019. First citation in articleGoogle Scholar

  • Kossoff EH, Zupec-Kania BA & Amark PE, et al.: Optimal clinical management of children receiving the ketogenic diet: Recommendations of the International Ketogenic Diet Study Group. Epilepsia 2009; 50: 304–317. First citation in articleGoogle Scholar

  • Schardt C, Adams MB, Owens T, Keitz S & Fontelo P: Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak 2007; 7: 16. First citation in articleGoogle Scholar

  • Boden G, Sargrad K, Homko C, Mozzoli M & Stein TP: Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med 2005; 142: 403–411. First citation in articleGoogle Scholar

  • Dashti HM, Mathew TC & Khadada M, et al.: Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem 2007; 302: 249–256. First citation in articleGoogle Scholar

  • Dyson PA, Beatty S & Matthews DR: A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects. Diabet Med 2007; 24: 1430–1435. First citation in articleGoogle Scholar

  • Francois ME, Myette-Cote E & Bammert TD, et al.: Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes. Am J Physiol Heart Circ Physiol 2017; 314: 105–113. First citation in articleGoogle Scholar

  • Goday A, Bellido D & Sajoux I, et al.: Short-Term safety, tolerability and efficacy of a very low-calorie-ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr Diabetes 2016; 6: 230. First citation in articleGoogle Scholar

  • Goldstein T, Kark JD, Berry EM, Adler B, Ziv E & Raz I: The effect of a low carbohydrate energy-unrestricted diet on weight loss in obese type 2 diabetes patients – A randomized controlled trial. e-SPEN 2011; 6: 178–186. First citation in articleGoogle Scholar

  • Hallberg S, McKenzie A & Creighton B, et al.: Improvement in atherogenic dyslipidemia at 70 days following a reduced carbohydrate intervention for treatment of type 2 diabetes. J Clin Lipidol 2016; 10: 665. First citation in articleGoogle Scholar

  • Hallberg SJ, McKenzie AL & Williams PT, et al.: Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: An open-label, non-randomized, controlled study. Diabetes Ther 2018; 9: 583–612. First citation in articleGoogle Scholar

  • Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N & Dashti HM: Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition 2012; 28: 1016–1021. First citation in articleGoogle Scholar

  • Iqbal N, Vetter ML & Moore RH, et al.: Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants. Obesity 2010; 18: 1733–1738. First citation in articleGoogle Scholar

  • Jellish WS, Emanuele MA & Abraira C: Graded sucrose/carbohydrate diets in overtly hypertriglyceridemic diabetic patients. Am J Med 1984; 77: 1015–1022. First citation in articleGoogle Scholar

  • Nuttall FQ, Almokayyad RM & Gannon MC: Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism 2015; 64: 253–262. First citation in articleGoogle Scholar

  • Saslow LR, Daubenmier JJ & Moskowitz JT, et al.: Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes 2017; 7: 304. First citation in articleGoogle Scholar

  • Saslow LR, Mason AE & Kim S, et al.: An online intervention vomparing a bery low-carbohydrate ketogenic diet and lifestyle recommendations versus a plate method diet in overweight individuals with type 2 diabetes: A randomized controlled trial. J Med Internet Res 2017; 19: 36. First citation in articleGoogle Scholar

  • Tay J, Thompson CH & Luscombe-Marsh ND, et al.: Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial. Diabetes Obes Metab 2017; 20: 858–871. First citation in articleGoogle Scholar

  • Yancy Jr WS, Foy M, Chalecki AM, Vernon MC & Westman EC: A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab 2005; 2: 34. First citation in articleGoogle Scholar

  • Mavropoulos JC, Yancy WS, Hepburn J & Westman EC: The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: A pilot study. Nutr Metab 2005; 2: 35. First citation in articleGoogle Scholar

  • Ornstein RM, Copperman NM & Jacobson MS: Effect of weight loss on menstrual function in adolescents with polycystic ovary syndrome. J Pediatr Adolesc Gynecol 2011; 24: 161–165. First citation in articleGoogle Scholar

  • Barr S, Reeves S, Sharp K & Jeanes YM: An isocaloric low glycemic index diet improves insulin sensitivity in women with polycystic ovary syndrome. J Acad Nutr Diet 2013; 113: 1523–1531. First citation in articleGoogle Scholar

  • Douglas CC, Gower BA, Darnell BE, Ovalle F, Oster RA & Azziz R: Role of diet in the treatment of polycystic ovary syndrome. Fertil Steril 2006; 85: 679–688. First citation in articleGoogle Scholar

  • Gower BA, Chandler-Laney PC & Ovalle F, et al.: Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin Endocrinol (Oxf) 2013; 79: 550–557. First citation in articleGoogle Scholar

  • Marsh KA, Steinbeck KS, Atkinson FS, Petocz P & Brand-Miller JC: Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am J Clin Nutr 2010; 92: 83–92. First citation in articleGoogle Scholar

  • Moran LJ, Noakes M, Clifton PM, Tomlinson L, Galletly C & Norman RJ: Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003; 88: 812–819. First citation in articleGoogle Scholar

  • Palomba S, Giallauria F & Falbo A, et al.: Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with anovulatory infertility: a 24-week pilot study. Hum Reprod 2008; 23: 642–650. First citation in articleGoogle Scholar

  • Sorensen LB, Soe M, Halkier KH, Stigsby B & Astrup A: Effects of increased dietary protein-to-carbohydrate ratios in women with polycystic ovary syndrome. Am J Clin Nutr 2012; 95: 39–48. First citation in articleGoogle Scholar

  • Stamets K, Taylor DS, Kunselman A, Demers LM, Pelkman CL & Legro RS: A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil Steril 2004; 81: 630–637. First citation in articleGoogle Scholar

  • Szczuko M, Malarczyk I & Zapalowska-Chwyc M: Improvement in anthropometric parameters after rational dietary intervention in women with Polycystic Ovary Syndrom as the best method to support treatment. Rocz Panstw Zakl Hig 2017; 68: 409–417. First citation in articleGoogle Scholar

  • Thomson RL, Buckley JD, Noakes M, Clifton PM, Norman RJ & Brinkworth GD: The effect of a hypocaloric diet with and without exercise training on body composition, cardiometabolic risk profile, and reproductive function in overweight and obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 2008; 93: 3373–3380. First citation in articleGoogle Scholar

  • Nordmann AJ, Nordmann A & Briel M, et al.: Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 285–293. First citation in articleGoogle Scholar

  • Arase K, Fisler JS, Shargill NS, York DA & Bray GA: Intracerebroventricular infusions of 3-OHB and insulin in a rat model of dietary obesity. Am J Physiol 1988; 255: 974–981. First citation in articleGoogle Scholar

  • McClernon FJ, Yancy WS, Jr., Eberstein JA, Atkins RC & Westman EC: The effects of a low-carbohydrate ketogenic diet and a low-fat diet on mood, hunger, and other self-reported symptoms. Obesity (Silver Spring) 2007; 15: 182–187. First citation in articleGoogle Scholar

  • Johnstone AM, Horgan GW, Murison SD, Bremner DM & Lobley GE: Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr 2008; 87: 44–55. First citation in articleGoogle Scholar

  • Boison D & Simeone TA: Ketogenic diet and PPARgamma. In: Masino SA (ed). Ketogenic Diet and Metabolic Therapies: Expanded Roles in Health and Disease. Oxford; Oxford University Press: 2016. First citation in articleGoogle Scholar

  • Malapaka RR, Khoo S & Zhang J, et al.: Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J Biol Chem 2012; 287: 183–195. First citation in articleGoogle Scholar

  • Paoli A, Rubini A, Volek JS & Grimaldi KA: Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 2013; 67: 789–796. First citation in articleGoogle Scholar

  • Caraballo R, Vaccarezza M & Cersosimo R, et al.: Long-term follow-up of the ketogenic diet for refractory epilepsy: multicenter Argentinean experience in 216 pediatric patients. Seizure 2011; 20: 640–645. First citation in articleGoogle Scholar

  • Dressler A, Stocklin B & Reithofer E, et al.: Long-term outcome and tolerability of the ketogenic diet in drug-resistant childhood epilepsy –the Austrian experience. Seizure 2010; 19: 404–408. First citation in articleGoogle Scholar

  • Kwiterovich PO, Jr., Vining EP, Pyzik P, Skolasky R, Jr. & Freeman JM: Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 2003; 290: 912–920. First citation in articleGoogle Scholar

  • Sharman MJ, Kraemer WJ & Love DM, et al.: A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr 2002; 132: 1879–1885. First citation in articleGoogle Scholar

  • Volek JS, Gomez AL & Kraemer WJ: Fasting lipoprotein and postprandial triacylglycerol responses to a low-carbohydrate diet supplemented with n-3 fatty acids. J Am Coll Nutr 2000; 19: 383–391. First citation in articleGoogle Scholar

  • McCartney CR & Marshall JC: Polycystic ovary syndrome. N Engl J Med 2016; 375: 54–64. First citation in articleGoogle Scholar

  • Mugabo Y, Li L & Renier G: The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev 2010; 6: 27–34. First citation in articleGoogle Scholar

  • Maritim AC, Sanders RA & Watkins JB: Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17: 24–38. First citation in articleGoogle Scholar

  • Johnson EL & Cervenka MC: Dietary therapy in adults: history, demand, and results. In: (ed). Ketogenic and Metabolic Therapies: Expanded Roles in Health and Disease. Oxford; et al.: 2016. First citation in articleGoogle Scholar

  • Sinclair HM: The Diet of Canadian Indians and Eskimos. Proc Nutr Soc 1953; 12: 69–82. First citation in articleGoogle Scholar

  • Gautschi M, Weisstanner C, Slotboom J, Nava E, Zurcher T & Nuoffer JM: Highly efficient ketone body treatment in multiple acyl-CoA dehydrogenase deficiency-related leukodystrophy. Pediatr Res 2015; 77: 91–98. First citation in articleGoogle Scholar

  • Milder J & Patel M: Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res 2012; 100: 295–303. First citation in articleGoogle Scholar

  • McDaniel SS, Rensing NR, Thio LL, Yamada KA & Wong M: The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 2011; 52: 7–11. First citation in articleGoogle Scholar

  • Bough KJ, Wetherington J & Hassel B, et al.: Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Anna Neurol 2006; 60: 223–235. First citation in articleGoogle Scholar

  • Kim DY, Simeone KA & Simeone TA, et al.: Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Ann Neurol 2015; 78: 77–87. First citation in articleGoogle Scholar

  • Seyfried TN & Shelton LM: Metabolism-based treatments to counter cancer: scientific rationale. In: (ed). Ketogenic Diet and Metabolic Therapies: Expanded Roles in Health and Disease. Oxford; Oxford University Press: 2016. First citation in articleGoogle Scholar

  • Rho JM, Cunnane SC & Courchesne-Loyer A, et al.: Glucose and ketone metabolism in the aging brain: implications for therapeutic strategies to delay the progression of Alzheimer’s Disease. In: (ed). Ketogenic Diet and Metabolic Therapies: Expanded Roles in Health and Disease. Oxford; Oxford University Press: 2016. First citation in articleGoogle Scholar

  • Jarrett SG, Milder JB, Liang LP & Patel M: The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 2008; 106: 1044–1051. First citation in articleGoogle Scholar

  • Al-Zaid NS, Dashti HM, Mathew TC & Juggi J: Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol 2007; 62: 381–389. First citation in articleGoogle Scholar

  • Ruskin DN, Kawamura M & Masino SA: Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet. PloS One 2009; 4: 8349. First citation in articleGoogle Scholar

  • Yang X & Cheng B: Neuroprotective and anti-inflammatory activities of ketogenic diet on MPTP-induced neurotoxicity. J Mol Neurosci 2010; 42: 145–153. First citation in articleGoogle Scholar

  • Youm YH, Nguyen KY & Grant RW, et al.: The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature Med 2015; 21: 263–269. First citation in articleGoogle Scholar

  • Masino SA, Li T & Theofilas P, et al.: A ketogenic diet suppresses seizures in mice through adenosine A(1) receptors. J Clin Invest 2011; 121: 2679–2683. First citation in articleGoogle Scholar

  • Woolf EC, Curley KL & Liu Q, et al.: The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential and vascular permeability in a mouse glioma model. PloS One 2015; 10: e0130357. First citation in articleGoogle Scholar