Skip to main content
Continuing Medical Education

CME: Mechanische Reanimationshilfe bei Herz-Kreislauf-Stillstand CME-Fragen

Published Online:https://doi.org/10.1024/1661-8157/a003764

Zusammenfassung. Eine möglichst frühzeitige und qualitativ hochwertige kardiopulmonale Reanimation ist die effektivste Massnahme zur Senkung der Mortalität und Verbesserung des neurologischen Outcomes bei Herz-Kreislauf-Stillstand. Mit dem Ziel, die Reanimationsqualität zu verbessern, wurden verschiedene mechanische Reanimationshilfen (Assist Devices), die die manuelle Kompression ersetzen können, entwickelt. Wann diese eingesetzt werden können, ob sie zu einer Verbesserung des Outcomes führen und mit welchen Verletzungen sie einhergehen, wurde in mehreren Studien untersucht, worüber dieser Beitrag eine Übersicht schaffen soll.


CME: Mechanical Assist Devices in Cardiopulmonary Resuscitation

Abstract. Early high-quality cardiopulmonary resuscitation in the event of a cardiac arrest is the most effective measure to improve the outcome. With the aim of improving the quality of resuscitation and replacing the need of manual compression, various mechanical assist devices have been developed and are used in the clinical practice. When should they be used, whether do they lead to better outcomes and what injuries are they associated with? These questions have been examined in several studies and the following review will provide an overview.

Bibliografie

  • Talikowska M , Tohira H , Finn J . Cardiopulmonary resuscitation quality and patient survival outcome in cardiac arrest: A systematic review and meta-analysis. Resuscitation . 2015; 96 :66–77. First citation in articleCrossref MedlineGoogle Scholar

  • Esibov A , Banville I , Chapman FW , Boomars R , Box M , Rubertsson S . Mechanical chest compressions – improved aspects of CPR in the LINC trial. Resuscitation . 2015; 91 :116–121. First citation in articleCrossref MedlineGoogle Scholar

  • Fox J , Fiechter R , Gerstl P , et al. Mechanical versus manual chest compression CPR under ground ambulance transport conditions. Acute Card Care . 2013; 15 (1):1–6. First citation in articleCrossref MedlineGoogle Scholar

  • Venturini JM , Retzer E , Estrada JR , et al. Mechanical chest compressions improve rate of return of spontaneous circulation and allow for initiation of percutaneous circulatory support during cardiac arrest in the cardiac catheterization laboratory. Resuscitation . 2017; 115 :56–60. First citation in articleCrossref MedlineGoogle Scholar

  • Wagner H , Hardig BM , Rundgren M , et al. Mechanical chest compressions in the coronary catheterization laboratory to facilitate coronary intervention and survival in patients requiring prolonged resuscitation efforts. Scand J Trauma Resusc Emerg Med . 2016; 24 :4. First citation in articleCrossref MedlineGoogle Scholar

  • Larsen AI , Hjørnevik A , Bonarjee V , Barvik S , Melberg T , Nilsen DW . Coronary blood flow and perfusion pressure during coronary angiography in patients with ongoing mechanical chest compression: a report on 6 cases. Resuscitation . 2010; 81 (4):493–497. First citation in articleCrossref MedlineGoogle Scholar

  • Wallace SK , Abella BS , Becker LB . Quantifying the effect of cardiopulmonary resuscitation quality on cardiac arrest outcome: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes . 2013; 6 (2):148–156. First citation in articleCrossref MedlineGoogle Scholar

  • Hallstrom A , Rea TD , Sayre MR , et al. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA . 2006; 295 (22):2620–2628. First citation in articleCrossref MedlineGoogle Scholar

  • Hock Ong ME , Fook-Chong S , Annathurai A , et al. Improved neurologically intact survival with the use of an automated, load-distributing band chest compression device for cardiac arrest presenting to the emergency department. Crit Care . 2012; 16 (4):R144. First citation in articleCrossref MedlineGoogle Scholar

  • Wik L , Olsen JA , Persse D , et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation . 2014; 85 (6):741–748. First citation in articleCrossref MedlineGoogle Scholar

  • Rubertsson S , Lindgren E , Smekal D , et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA . 2014; 311 (1):53–61. First citation in articleCrossref MedlineGoogle Scholar

  • Perkins GD , Lall R , Quinn T , et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet . 2015; 385 (9972):947–955. First citation in articleCrossref MedlineGoogle Scholar

  • Li H , Wang D , Yu Y , Zhao X , Jing X . Mechanical versus manual chest compressions for cardiac arrest: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med . 2016; 24 :10. First citation in articleCrossref MedlineGoogle Scholar

  • Miller AC , Rosati SF , Suffredini AF , Schrump DS . A systematic review and pooled analysis of CPR-associated cardiovascular and thoracic injuries. Resuscitation . 2014; 85 (6):724–731. First citation in articleCrossref MedlineGoogle Scholar

  • Karasek J , Blankova B , Doubkova A , et al. CPR related injuries. European Heart Journal . 2020; 41 (Supplement 2). First citation in articleCrossrefGoogle Scholar

  • Karasek J , Blankova A , Doubková A , et al. The comparison of cardiopulmonary resuscitation-related trauma: Mechanical versus manual chest compressions. Forensic Sci Int . 2021; 323 :110812. First citation in articleCrossref MedlineGoogle Scholar

  • Koster RW , Beenen LF , van der Boom EB , et al. Safety of mechanical chest compression devices AutoPulse and LUCAS in cardiac arrest: a randomized clinical trial for non-inferiority. Eur Heart J . 2017; 38 (40):3006–3013. First citation in articleCrossref MedlineGoogle Scholar

  • Lardi C , Egger C , Larribau R , Niquille M , Mangin P , Fracasso T . Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS2): a forensic autopsy study. Int J Legal Med . 2015; 129 (5):1035–1042. First citation in articleCrossref MedlineGoogle Scholar

  • Smekal D , Lindgren E , Sandler H , Johansson J , Rubertsson S . CPR-related injuries after manual or mechanical chest compressions with the LUCAS™ device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation . 2014; 85 (12):1708–1712. First citation in articleCrossref MedlineGoogle Scholar

  • Koga Y , Fujita M , Yagi T , et al. Effects of mechanical chest compression device with a load-distributing band on post-resuscitation injuries identified by post-mortem computed tomography. Resuscitation . 2015; 96 :226–231. First citation in articleCrossref MedlineGoogle Scholar

  • Pinto DC , Haden-Pinneri K , Love JC . Manual and automated cardiopulmonary resuscitation (CPR): a comparison of associated injury patterns. J Forensic Sci . 2013; 58 (4):904–909. First citation in articleCrossref MedlineGoogle Scholar

  • Panchal AR , Bartos JA , Cabañas JG , et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation . 2020; 142 (16 suppl 2):S366–S468. First citation in articleCrossref MedlineGoogle Scholar

  • Perkins GD , Graesner JT , Semeraro F , et al. European Resuscitation Council Guidelines. 2021: Executive summary. Resuscitation . 2021; 161 :1–60. First citation in articleCrossref MedlineGoogle Scholar

  • Soar J , Böttiger BW , Carli P , et al. European Resuscitation Council Guidelines. 2021: Adult advanced life support. Resuscitation . 2021; 161 :115–151. First citation in articleCrossref MedlineGoogle Scholar