Skip to main content
Full-Length Research Report

The Association Between Physical Activity and Attentional Control in Younger and Older Middle-Aged Adults

An ERP Study

Published Online:https://doi.org/10.1024/1662-9647/a000072

This study investigates the association between physical activity level and attentional control in a group of younger and older middle-aged adults (MA). Participants performed a Flanker task; two types of conflict were analyzed: response and perceptual conflict. For perceptual conflict, behavioral findings suggest that, irrespective of age, physical activity is positively associated with attentional control. For response conflicts, only highly active younger MA showed better attentional control, indicated by increased amplitudes of the event related potential N2 and reduced interference costs by distracting information. Physical activity did not modulate P3 amplitudes. The findings are discussed with respect to physical activity as functional approach to maintain cognitive functioning across the lifespan.

References

  • Aberg, M. A., Pedersen, N. L., Toren, K., Svartengren, M., Backstrand, B., Johnsson, T. , ... Kuhn, H. G. (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 106, 20906–20911. First citation in articleGoogle Scholar

  • Bäckman, L., Farde, L. (2005). The role of dopamine systems in cognitive aging. In R. Cabeza L. Nyberg D. ParkEds., Cognitive neuroscience of aging: Linking cognitive and cerebral aging. (pp. 58–84). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Bäckman, L., Ginovart, N., Dixon, R. A., Wahlin, T., Wahlin, A., Halldin, C., Farde, L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157, 635–637. First citation in articleCrossrefGoogle Scholar

  • Baecke, J. A., Burema, J., Frijters, J. E. (1982). A short questionnaire for the measurement of habitual physical activity in epidemiological studies. American Journal of Clinical Nutrition, 36, 936–942. First citation in articleCrossrefGoogle Scholar

  • Chang, M., Jonsson, P. V., Snaedal, J., Bjornsson, S., Saczynski, J. S., Aspelund, T. , ... Launer, L. J. (2010). The effect of midlife physical activity on cognitive function among older adults: AGES-Reykjavik study. The Journals of Gerontology: Series A: Biological Sciences and Medical Sciences, 65A, 1369–1374. First citation in articleCrossrefGoogle Scholar

  • Chodzko-Zajko, W. J., Moore, K. A. (1994). Physical fitness and cognitive functioning in aging. Exercise and Sport Sciences Reviews, 22, 195–220. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S., Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125–130. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging, 20, 363–375. First citation in articleCrossrefGoogle Scholar

  • Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M., Holcomb, P. J. (2011). Mechanisms underlying age- and performance-related differences in working memory. Journal of Cognitive Neuroscience, 23, 1298–1314. First citation in articleCrossrefGoogle Scholar

  • Daigneault, S., Braun, C. M. (1993). Working memory and the self-ordered pointing task: Further evidence of early prefrontal decline in normal aging. Journal of Clinical and Experimental Neuropsychology, 15, 881–895. First citation in articleCrossrefGoogle Scholar

  • Dash, P. K., Moore, A. N., Kobori, N., Runyan, J. D. (2007). Molecular activity underlying working memory. Learning & Memory (Cold Spring Harbor, N. Y.), 4(8), 554–563. First citation in articleCrossrefGoogle Scholar

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331. First citation in articleCrossrefGoogle Scholar

  • Eriksen, B. A., Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143–149. First citation in articleCrossrefGoogle Scholar

  • Etnier, J. L., Nowell, P. M., Landers, D. M., Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130. First citation in articleCrossrefGoogle Scholar

  • Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport and Exercise Psychology, 19, 249–277. First citation in articleCrossrefGoogle Scholar

  • Folstein, J. R., Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170. First citation in articleCrossrefGoogle Scholar

  • Frühholz, S., Godde, B., Finke, M., Herrmann, M. (2011). Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task. NeuroImage, 54(1), 622–634. First citation in articleCrossrefGoogle Scholar

  • Goldberg, T. E., Weinberger, D. R. (2004). Genes and the parsing of cognitive processes. Trends in Cognitive Sciences, 8, 325–335. First citation in articleCrossrefGoogle Scholar

  • Guerreiro, M. J. S., Murphy, D. R., Van Gerven, P. W. M. (2010). The role of sensory modality in age-related distraction: A critical review and a renewed view. Psychological Bulletin, 136, 975–1022. First citation in articleCrossrefGoogle Scholar

  • Hämmerer, D., Li, S., Müller, V., Lindenberger, U. (2010). An electrophysiological study of response conflict processing across the lifespan: Assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression. Neuropsychologia, 48, 3305–3316. First citation in articleCrossrefGoogle Scholar

  • Hasher, L., Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower, (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 22, pp. 193–225). San Diego, CA: Academic Press. First citation in articleGoogle Scholar

  • Healey, M. K., Campbell, K. L., Hasher, L. (2008). Cognitive aging and increased distractibility: Costs and potential benefits. Progress in Brain Research, 169, 353–363. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Belopolsky, A. V., Snook, E. M., Kramer, A. F., McAuley, E. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75, 176–185. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114–129. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Erickson, K. I., Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews. Neuroscience, 9(1), 58–65. First citation in articleGoogle Scholar

  • Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., de Geus, E. J. C. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678–687. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H., Weiss, E. P., Hagberg, J. M., Hatfield, B. D. (2002). The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology, 39, 303–312. First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B., Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (1997). Interactions between stimulus-stimulus congruence and stimulus-response compatibility. Psychological Research/Psychologische Forschung, 59, 248–260. First citation in articleCrossrefGoogle Scholar

  • Jacobs, D. R., Jr, Ainsworth, B. E., Hartman, T. J., Leon, A. S. (1993). A simultaneous evaluation of 10 commonly used physical activity questionnaires. Medicine and Science in Sports and Exercise, 25(1), 81–91. First citation in articleCrossrefGoogle Scholar

  • Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography: 1957. Electroencephalography and Clinical Neurophysiology, 10, 370–375. First citation in articleGoogle Scholar

  • Jennings, J. R. (1987). Editorial policy on analyses of variance with repeated measures. Psychophysiology, 24, 474–475. First citation in articleCrossrefGoogle Scholar

  • Kamijo, K. (2009). Effects of acute exercise on event-related brain potentials. In W. Chodzko-Zajko A. F. Kramer L. W. PoonEds., Enhancing cognitive functioning and brain plasticity (pp. 111–132). Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Kane, M. J., Hasher, L., Stoltzfus, E. R., Zacks, R. T., Connelly, S. L. (1994). Inhibitory attentional mechanisms and aging. Psychology and Aging, 9, 103–112. First citation in articleCrossrefGoogle Scholar

  • Kramer, A. F., Erickson, K. I., Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101, 1237–1242. First citation in articleCrossrefGoogle Scholar

  • Li, S. C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., Baltes, P. B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the lifespan. Psychological Science, 15, 155–163. First citation in articleCrossrefGoogle Scholar

  • Lindenberger, U., Nagel, I. E., Chicherio, C., Li, S.-C., Heekeren, H. R., Bäckman, L. (2009). Age-related decline in brain resources modulates genetic effects on cognitive functioning. Frontiers in Neuroscience, 2(2), 234–244. First citation in articleCrossrefGoogle Scholar

  • Luck, S. (2005). An introduction to the event-related potential technique (cognitive neuroscience). Cambridge, MA: The MIT Press. First citation in articleGoogle Scholar

  • Lustig, C., Hasher, L., Tonev, S. T. (2006). Distraction as a determinant of processing speed. Psychonomic Bulletin & Review, 13(4), 619–625. First citation in articleCrossrefGoogle Scholar

  • Martin, M., Schneider, R., Eicher, S., Moor, C. (2012). The functional quality of life (fQOL)-model: A new basis for quality of life-enhancing interventions in old age. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 25, 33–40. First citation in articleLinkGoogle Scholar

  • McEvoy, L. K., Pellouchoud, E., Smith, M. E., Gevins, A. (2001). Neurophysiological signals of working memory in normal aging. Cognitive Brain Research, 11, 363–376. First citation in articleCrossrefGoogle Scholar

  • McMorris, T., Sproule, J., Turner, A., Hale, B. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3–4), 421–428. First citation in articleCrossrefGoogle Scholar

  • Meeusen, R., Piacentini, M. F., Kempenaers, F., Busschaert, B., De Schutter, G., Buyse, L., De Meirleir, K. (2001). Neurotransmitter im Gehirn während körperlicher belastung [Brain neurotransmitter levels during exercise]. Deutsche Zeitschrift für Sportmedizin, 52, 361–368. First citation in articleGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G. H., Holroyd, C. B., Kok, A., Van, D. M. (2002). A computational account of altered error processing in older age: Dopamine and the error-related negativity. Cognitive, Affective and Behavioral Neuroscience, 2(1), 19–36. First citation in articleGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 91–113. First citation in articleCrossrefGoogle Scholar

  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult lifespan. Psychology and Aging, 17, 299–320. First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. First citation in articleCrossrefGoogle Scholar

  • Pontifex, M. B., Hillman, C. H., Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46, 379–387. First citation in articleCrossrefGoogle Scholar

  • Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J. M., Chaddock, L., Malkowski, E. , ... Kramer, A. F. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229. First citation in articleCrossrefGoogle Scholar

  • Richards, M., Hardy, R., Wadsworth, M. E. J. (2003). Does active leisure protect cognition? Evidence from a national birth cohort. Social Science and Medicine, 56, 785–792. First citation in articleCrossrefGoogle Scholar

  • Rieckmann, A., Karlsson, S., Karlsson, P., Brehmer, Y., Fischer, H., Farde, L. , ... Bäckman, L. (2011). Dopamine D1 receptor associations within and between dopaminergic pathways in younger and elderly adults: Links to cognitive performance. Cerebral Cortex, 21, 2023–2032. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13, 140–144. First citation in articleCrossrefGoogle Scholar

  • Samanez-Larkin, G., Robertson, E. R., Mikels, J. A., Carstensen, L. L., Gotlib, I. H. (2009). Selective attention to emotion in the aging brain. Psychology and Aging, 24, 519–529. First citation in articleCrossrefGoogle Scholar

  • Segalowitz, S. J., Wintink, A. J., Cudmore, L. J. (2001). P3 topographical change with task familiarization and task complexity. Cognitive Brain Research, 12, 451–457. First citation in articleCrossrefGoogle Scholar

  • Singh-Manoux, A., Hillsdon, M., Brunner, E., Marmot, M. (2005). Effects of physical activity on cognitive functioning in middle age: Evidence from the Whitehall II prospective cohort study. American Journal of Public Health, 95, 2252–2258. First citation in articleCrossrefGoogle Scholar

  • Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R., Kiefer, M. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research, 1269, 114–124. First citation in articleCrossrefGoogle Scholar

  • Themanson, J. R., Hillman, C. H. (2006). Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 141, 757–767. First citation in articleCrossrefGoogle Scholar

  • Themanson, J. R., Hillman, C. H., Curtin, J. J. (2006). Age and physical activity influences on action monitoring during task switching. Neurobiology of Aging, 27, 1335–1345. First citation in articleCrossrefGoogle Scholar

  • Tomporowski, P. D., Davis, C. L., Miller, P. H., Naglieri, J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review, 20, 111–131. First citation in articleCrossrefGoogle Scholar

  • van Veen, V., Carter, C. S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 593. First citation in articleCrossrefGoogle Scholar

  • Voelcker-Rehage, C., Godde, B., Staudinger, U. M. (2010). Physical and motor fitness are both related to cognition in old age. The European Journal of Neuroscience, 31(1), 167–176. First citation in articleCrossrefGoogle Scholar

  • Wagner, P., Singer, R. (2003). Ein Fragebogen zur Erfassung der habituellen körperlichen Aktivität verschiedener Bevölkerungsgruppen [A questionnaire for the measurement of habitual physical activity in different groups of population]. Sportwissenschaft, 33, 383–397. First citation in articleGoogle Scholar

  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292. First citation in articleCrossrefGoogle Scholar

  • Wild-Wall, N., Falkenstein, M., Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Frontiers in Psychology, 2, 186. First citation in articleCrossrefGoogle Scholar

  • Winkler, R. (2005). Ältere Menschen als Ressource für die Wirtschaft und Gesellschaft von morgen [Older adults as resource for the economy and society of tomorrow]. In W. Clemens F. Hüpfinger R. WinklerEds., Arbeit in späteren Lebensphasen. Sackgassen, Perspektiven, Visionen (pp. 127–154). Bern: Haupt. First citation in articleGoogle Scholar

  • Yeung, N., Botvinick, M. M., Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959. First citation in articleCrossrefGoogle Scholar