Skip to main content
Published Online:https://doi.org/10.1024/1662-9647/a000219

Abstract. We examined whether interindividual differences in cognitive functioning among older adults are related to episodic memory engagement during autobiographical memory retrieval. Older adults (n = 49, 24 males; mean age = 69.93; mean education = 15.45) with different levels of cognitive functioning, estimated using the Montreal Cognitive Assessment (MoCA), retrieved multiple memories (generation task) and the details of a single memory (elaboration task) to cues representing thematic or event-specific autobiographical knowledge. We found that the MoCA score positively predicted the proportion of specific memories for generation and episodic details for elaboration, but only to cues that represented event-specific information. The results demonstrate that individuals with healthy, but not unhealthy, cognitive status can leverage contextual support from retrieval cues to improve autobiographical specificity.

References

  • Addis, D., Roberts, R., & Schacter, D. (2011). Age-related neural changes in autobiographical remembering and imagining. Neuropsychologia, 49, 3656–3669. First citation in articleCrossrefGoogle Scholar

  • Addis, D., & Tippett, L. (2004). Memory of myself: Autobiographical memory and identity in Alzheimer’s disease. Memory, 12, 56–74. First citation in articleCrossrefGoogle Scholar

  • Aizpurua, A., & Koutstaal, W. (2015). A matter of focus: Detailed memory in the intentional autobiographical recall of older and younger adults. Consciousness and Cognition, 33, 145–155. First citation in articleCrossrefGoogle Scholar

  • Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16, 17–42. First citation in articleCrossrefGoogle Scholar

  • Barnabe, A., Whitehead, V., Pilon, R., Arsenault‐Lapierre, G., & Chertkow, H. (2012). Autobiographical memory in mild cognitive impairment and Alzheimer’s disease: A comparison between the Levine and Kopelman interview methodologies. Hippocampus, 22, 1809–1825. First citation in articleCrossrefGoogle Scholar

  • Baudouin, A., Vanneste, S., Isingrini, M., & Pouthas, V. (2006). Differential involvement of internal clock and working memory in the production and reproduction of duration: A study on older adults. Acta Psychologica, 121, 285–296. First citation in articleCrossrefGoogle Scholar

  • Bluck, S. (2003). Autobiographical memory: Exploring its functions in everyday life. Memory, 11, 113–123. First citation in articleCrossrefGoogle Scholar

  • Bryan, J., & Luszcz, M. A. (2000). Measurement of executive function: Considerations for detecting adult age differences. Journal of Clinical and Experimental Neuropsychology, 22, 40–55. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85–100. First citation in articleCrossrefGoogle Scholar

  • Cabeza, R., Albert, M., Belleville, S., Craik, F. I., Duarte, A., Grady, C. L., … Reuter-Lorenz, P. A. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19, 701–710. First citation in articleCrossrefGoogle Scholar

  • Conway, M. A. (2005). Memory and the self. Journal of Memory and Language, 53, 594–628. First citation in articleCrossrefGoogle Scholar

  • Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261–288. First citation in articleCrossrefGoogle Scholar

  • Craik, F. I. M. (1983). On the transfer of information from temporary to permanent memory. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 302(1110), 341–359. First citation in articleCrossrefGoogle Scholar

  • Craik, F. I. M., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In F. I. M. CraikS. E. TrehubEds., Aging and cognitive processes (pp. 191–211). New York, NY: Plenum Press. First citation in articleGoogle Scholar

  • Craik, F., Eftekhari, E., Bialystok, E., & Anderson, N. D. (2018). Individual differences in executive functions and retrieval efficacy in older adults. Psychology and Aging, 33, 1105–1114. First citation in articleCrossrefGoogle Scholar

  • Craik, F., Klix, F., & Hagendorf, H. (1986). A functional account of age differences in memory. New York, NY: Routledge. First citation in articleGoogle Scholar

  • Craik, F., & McDowd, J. (1987). Age differences in recall and recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 474–479. First citation in articleCrossrefGoogle Scholar

  • Craik, F., & Schloerscheidt, A. (2011). Age-related differences in recognition memory: Effects of materials and context change. Psychology and Aging, 26, 671–677. First citation in articleCrossrefGoogle Scholar

  • D’Angelo, M. C., Smith, V. M., Kacollja, A., Zhang, F., Binns, M. A., Barense, M. D., & Ryan, J. D. (2016). The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status. Aging, Neuropsychology, and Cognition, 23, 667–690. First citation in articleCrossrefGoogle Scholar

  • Dando, C. J. (2013). Drawing to remember: External support of older adults’ eyewitness performance. PLoS One, 8(7), e69937. First citation in articleCrossrefGoogle Scholar

  • Dennis, N. A., Bowman, C. R., & Peterson, K. M. (2014). Age-related differences in the neural correlates mediating false recollection. Neurobiology of Aging, 35, 395–407. First citation in articleCrossrefGoogle Scholar

  • Devitt, A. L., Addis, D. R., & Schacter, D. L. (2017). Episodic and semantic content of memory and imagination: A multilevel analysis. Memory & Cognition, 45, 1–17. First citation in articleCrossrefGoogle Scholar

  • Döhnel, K., Sommer, M., Ibach, B., Rothmayr, C., Meinhardt, J., & Hajak, G. (2008). Neural correlates of emotional working memory in patients with mild cognitive impairment. Neuropsychologia, 46, 37–48. First citation in articleCrossrefGoogle Scholar

  • Donix, M., Brons, C., Jurjanz, L., Poettrich, K., Winiecki, P., & Holthoff, V. A. (2009). Overgenerality of autobiographical memory in people with amnestic mild cognitive impairment and early Alzheimer’s disease. Archives of Clinical Neuropsychology, 25, 22–27. First citation in articleCrossrefGoogle Scholar

  • Dritschel, B. H., Williams, J. M., Baddeley, A. D., & Nimmo-Smith, I. (1992). Autobiographical fluency: A method for the study of personal memory. Memory & Cognition, 20, 133–140. First citation in articleCrossrefGoogle Scholar

  • Duarte, A., Ranganath, C., Trujillo, C., & Knight, R. T. (2006). Intact recollection memory in high-performing older adults: ERP and behavioral evidence. Journal of Cognitive Neuroscience, 18, 33–47. First citation in articleCrossrefGoogle Scholar

  • Eichenbaum, H. (2003). How does the hippocampus contribute to memory? Trends in Cognitive Sciences, 7, 427–429. First citation in articleCrossrefGoogle Scholar

  • Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109–120. First citation in articleCrossrefGoogle Scholar

  • Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. First citation in articleCrossrefGoogle Scholar

  • El Haj, M., Antoine, P., Nandrino, J. L., & Kapogiannis, D. (2015). Autobiographical memory decline in Alzheimer’s disease: A theoretical and clinical overview. Ageing Research Reviews, 23, 183–192. First citation in articleCrossrefGoogle Scholar

  • Ford, J. H., Rubin, D. C., & Giovanello, K. S. (2014). Effects of task instruction on the specificity of autobiographical memory in young and older adults. Memory, 22, 722–736. First citation in articleCrossrefGoogle Scholar

  • Glisky, E. L. (2007). Changes in cognitive function. In D. R. RiddleEd., Human aging in brain aging: Models, methods and mechanisms (pp. 3–20). Boca Raton, FL: CRC Press, Taylor & Francis Group. First citation in articleGoogle Scholar

  • Holland, C., & Rabbitt, P. (1990). Autobiographical and text recall in the elderly: An investigation of a processing resource deficit. The Quarterly Journal of Experimental Psychology, 42, 441–470. First citation in articleCrossrefGoogle Scholar

  • The jamovi project. (2019). jamovi [Computer Software]. Retrieved from https://www.jamovi.org First citation in articleGoogle Scholar

  • Kelley, K. (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-project.org/package=MBESS First citation in articleGoogle Scholar

  • Kyung, Y., Yanes-Lukin, P., & Roberts, J. E. (2016). Specificity and detail in autobiographical memory: Same or different constructs? Memory, 24, 272–284. First citation in articleCrossrefGoogle Scholar

  • Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677–689. First citation in articleCrossrefGoogle Scholar

  • Leyhe, T., Müller, S., Milian, M., Eschweiler, G. W., & Saur, R. (2009). Impairment of episodic and semantic autobiographical memory in patients with mild cognitive impairment and early Alzheimer’s disease. Neuropsychologia, 47, 2464–2469. First citation in articleCrossrefGoogle Scholar

  • Lighthall, N. R., Huettel, S. A., & Cabeza, R. (2014). Functional compensation in the ventromedial prefrontal cortex improves memory-dependent decisions in older adults. Journal of Neuroscience, 34, 15648–15657. First citation in articleCrossrefGoogle Scholar

  • Madore, K. P., Gaesser, B., & Schacter, D. L. (2014). Constructive episodic simulation: Dissociable effects of a specificity induction on remembering, imagining, and describing in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 609–622. First citation in articleCrossrefGoogle Scholar

  • Martinelli, P., Sperduti, M., Devauchelle, A.-D., Kalenzaga, S., Gallarda, T., Lion, S., … Meder, J. F. (2013). Age-related changes in the functional network underlying specific and general autobiographical memory retrieval: A pivotal role for the anterior cingulate cortex. PloS One, 8(12), e82385. First citation in articleCrossrefGoogle Scholar

  • Mason, C. F., & Ganzler, H. (1964). Adult norms for the Shipley Institute of Living Scale and Hooper Visual Organization Test based on age and education. Journal of Gerontology, 19, 419–424. First citation in articleCrossrefGoogle Scholar

  • Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9, 496–502. First citation in articleCrossrefGoogle Scholar

  • Matuszewski, V., Piolino, P., Belliard, S., de la Sayette, V., Laisney, M., C., Lalevee., & Desgranges, B. (2009). Patterns of autobiographical memory impairment according to disease severity in semantic dementia. Cortex, 45, 456–472. First citation in articleCrossrefGoogle Scholar

  • McIntyre, J. S., & Craik, F. I. (1987). Age differences in memory for item and source information. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 41, 175–192. First citation in articleCrossrefGoogle Scholar

  • Murphy, K. J., Troyer, A. K., Levine, B., & Moscovitch, M. (2008). Episodic, but not semantic, autobiographical memory is reduced in amnestic mild cognitive impairment. Neuropsychologia, 46, 3116–3123. First citation in articleCrossrefGoogle Scholar

  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695–699. First citation in articleCrossrefGoogle Scholar

  • Naveh-Benjamin, M., Hussain, Z., Guez, J., & Bar-On, M. (2003). Adult age differences in episodic memory: Further support for an associative-deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 826–837. First citation in articleCrossrefGoogle Scholar

  • Nyberg, L., Bäckman, L., Erngrund, K., Olofsson, U., & Nilsson, L.-G. (1996). Age differences in episodic memory, semantic memory, and priming: Relationships to demographic, intellectual, and biological factors. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 51, P234–P240. First citation in articleCrossrefGoogle Scholar

  • Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, Å., & Nilsson, L.-G. (2003). Selective adult age differences in an age-invariant multifactor model of declarative memory. Psychology and Aging, 18, 149–160. First citation in articleCrossrefGoogle Scholar

  • Olsen, R., Moses, S., Riggs, L., & Ryan, J. (2012). The hippocampus supports multiple cognitive processes through relational binding and comparison. Frontiers in Human Neuroscience, 6(146), 1–13. First citation in articleGoogle Scholar

  • Peters, S. L., Fan, C. L., & Sheldon, S. (2019). Episodic memory contributions to autobiographical memory and open-ended problem-solving specificity in younger and older adults. Memory & Cognition, 47, 1–14. First citation in articleCrossrefGoogle Scholar

  • Pillemer, D. (2003). Directive functions of autobiographical memory: The guiding power of the specific episode. Memory, 11, 193–202. First citation in articleCrossrefGoogle Scholar

  • Piolino, P., Coste, C., Martinelli, P., Macé, A.-L., Quinette, P., Guillery-Girard, B., & Belleville, S. (2010). Reduced specificity of autobiographical memory and aging: Do the executive and feature binding functions of working memory have a role? Neuropsychologia, 48, 429–440. First citation in articleCrossrefGoogle Scholar

  • Piolino, P., Desgranges, B., Benali, K., & Eustache, F. (2002). Episodic and semantic remote autobiographical memory in ageing. Memory, 10, 239–257. First citation in articleCrossrefGoogle Scholar

  • Piolino, P., Desgranges, B., Clarys, D., Guillery-Girard, B., Taconnat, L., Isingrini, M., & Eustache, F. (2006). Autobiographical memory, autonoetic consciousness, and self-perspective in aging. Psychology and Aging, 21, 510–525. First citation in articleCrossrefGoogle Scholar

  • Prebble, S. C., Addis, D. R., & Tippett, L. J. (2013). Autobiographical memory and sense of self. Psychological Bulletin, 139, 815–840. First citation in articleCrossrefGoogle Scholar

  • R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org First citation in articleGoogle Scholar

  • Rathbone, C. J., Holmes, E. A., Murphy, S. E., & Ellis, J. A. (2015). Autobiographical memory and well-being in aging: The central role of semantic self-images. Consciousness and Cognition, 33, 422–431. First citation in articleCrossrefGoogle Scholar

  • Ritter, A., Hawley, N., Banks, S. J., & Miller, J. B. (2017). The association between montreal cognitive assessment memory scores and hippocampal volume in a neurodegenerative disease sample. Journal of Alzheimer’s Disease, 58, 695–699. First citation in articleCrossrefGoogle Scholar

  • Roberts, J. E., Yanes-Lukin, P., & Kyung, Y. (2018). Distinctions between the specificity of autobiographical memory and detail: Trajectories across cue presentations. Consciousness and Cognition, 65, 342–351. First citation in articleCrossrefGoogle Scholar

  • Robin, J. (2018). Spatial scaffold effects in event memory and imagination. Wiley Interdisciplinary Reviews: Cognitive Science, 9, e1462. First citation in articleCrossrefGoogle Scholar

  • Robin, J., & Moscovitch, M. (2017). Familiar real-world spatial cues provide memory benefits in older and younger adults. Psychology and Aging, 32, 210–219. First citation in articleCrossrefGoogle Scholar

  • Robin, J., Wynn, J., & Moscovitch, M. (2016). The spatial scaffold: The effects of spatial context on memory for events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 308–315. First citation in articleCrossrefGoogle Scholar

  • Schear, J. M., & Harrison, W. R. (1988). Estimating WAIS IQ from the Shipley institute of living scale: A replication. Journal of Clinical Psychology, 44, 68–71. First citation in articleCrossrefGoogle Scholar

  • Seidl, U., Lueken, U., Thomann, P. A., Geider, J., & Schröder, J. (2011). Autobiographical memory deficits in Alzheimer’s disease. Journal of Alzheimer’s Disease, 27, 567–574. First citation in articleCrossrefGoogle Scholar

  • Serino, S., Morganti, F., Di Stefano, F., & Riva, G. (2015). Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: An experimental study with virtual reality. Frontiers in Aging Neuroscience, 7, 88. First citation in articleCrossrefGoogle Scholar

  • Serino, S., & Riva, G. (2014). What is the role of spatial processing in the decline of episodic memory in Alzheimer’s disease? The “mental frame syncing” hypothesis. Frontiers in Aging Neuroscience, 6, 33. First citation in articleCrossrefGoogle Scholar

  • Sheldon, S., & Chu, S. (2017). What versus where: Investigating how autobiographical memory retrieval differs when accessed with thematic versus spatial information. The Quarterly Journal of Experimental Psychology, 70, 1909–1921. First citation in articleCrossrefGoogle Scholar

  • Sheldon, S., McAndrews, M., & Moscovitch, M. (2011). Episodic memory processes mediated by the medial temporal lobes contribute to open-ended problem solving. Neuropsychologia, 49, 2439–2447. First citation in articleCrossrefGoogle Scholar

  • Sheldon, S., McAndrews, M., Pruessner, J., & Moscovitch, M. (2016). Dissociating patterns of anterior and posterior hippocampal activity and connectivity during distinct forms of category fluency. Neuropsychologia, 90, 148–158. First citation in articleCrossrefGoogle Scholar

  • Sheldon, S., & Moscovitch, M. (2012). The nature and time‐course of medial temporal lobe contributions to semantic retrieval: An fMRI study on verbal fluency. Hippocampus, 22, 1451–1466. First citation in articleCrossrefGoogle Scholar

  • Sheldon, S., Vandermorris, S., Al-Haj, M., Cohen, S., Winocur, G., & Moscovitch, M. (2015). Ill-defined problem solving in amnestic mild cognitive impairment: Linking episodic memory to effective solution generation. Neuropsychologia, 68, 168–175. First citation in articleCrossrefGoogle Scholar

  • Spencer, W. D., & Raz, N. (1995). Differential effects of aging on memory for content and context: A meta-analysis. Psychology and Aging, 10, 527–539. First citation in articleCrossrefGoogle Scholar

  • Steiger, J. H. (2004). Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9, 164–182. First citation in articleCrossrefGoogle Scholar

  • Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53, 1–25. First citation in articleCrossrefGoogle Scholar

  • Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: Review and meta-analysis. Neuropsychologia, 42, 1394–1413. First citation in articleCrossrefGoogle Scholar

  • Van Petten, C., Plante, E., Davidson, P. S., Kuo, T. Y., Bajuscak, L., & Glisky, E. L. (2004). Memory and executive function in older adults: Relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. Neuropsychologia, 42, 1313–1335. First citation in articleCrossrefGoogle Scholar

  • Verhaeghen, P., Marcoen, A., & Goossens, L. (1992). Improving memory performance in the aged through mnemonic training: A meta-analytic study. Psychology and Aging, 7, 242–251. First citation in articleCrossrefGoogle Scholar

  • Williams, J. M., & Broadbent, K. (1986). Autobiographical memory in suicide attempters. Journal of Abnormal Psychology, 95, 144–149. First citation in articleCrossrefGoogle Scholar